Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gernot Rother is active.

Publication


Featured researches published by Gernot Rother.


Philosophical Magazine | 2010

Supercritical fluid behavior at nanoscale interfaces: Implications for CO2 sequestration in geologic formations

David R. Cole; Ariel A. Chialvo; Gernot Rother; L. Vlcek; Peter T. Cummings

Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. A key aspect of this process is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We report the behavior of pure CO2 interacting with simple substrates, i.e. SiO2 and muscovite, that act as proxies for more complex mineralogical systems. Modeling of small-angle neutron scattering (SANS) data taken from CO2–silica aerogel (95% porosity; ∼7 nm pores) interactions indicates the presence of fluid depletion for conditions above the critical density. A theoretical framework, i.e. integral equation approximation (IEA), is presented that describes the fundamental behavior of near-critical adsorption onto a non-confining substrate that is consistent with SANS experimental results. Structural and dynamic behavior for supercritical CO2 interaction with muscovite (KAl2Si3AlO10(OH)2) was assessed by classical molecular dynamics (CMD). These results indicate the development of distinct layers of CO2 within slit pores, reduced mobility by one to two orders of magnitude compared to bulk CO2 depending on pore size and formation of bonds between CO2 oxygens and H from muscovite hydroxyls. Analysis of simple, well-characterized fluid-substrate systems can provide details on the thermodynamic, structural and dynamic properties of CO2 at conditions relevant to sequestration.


American Mineralogist | 2011

Characterization of deep weathering and nanoporosity development in shale - a neutron study

Lixin Jin; Gernot Rother; David R. Cole; D.F.R. Mildner; Christopher J. Duffy; Susan L. Brantley

Abstract We used small-angle and ultra-small-angle neutron scattering (SANS/USANS) to characterize the evolution of nanoscale features in weathering Rose Hill shale within the Susquehanna/Shale Hills Observatory (SSHO). The SANS/USANS techniques, here referred to as neutron scattering (NS), characterize porosity comprised of features ranging from approximately 3 nm to several micrometers in dimension. NS was used to investigate shale chips sampled by gas-powered drilling (“saprock”) or by hand-augering (“regolith”) at ridgetop. At about 20 m depth, dissolution is inferred to have depleted the bedrock of ankerite and all the chips investigated with NS are from above the ankerite dissolution zone. NS documents that 5-6% of the total ankerite-free rock volume is comprised of isolated, intraparticle pores. At 5 m depth, an abrupt increase in porosity and surface area corresponds with onset of feldspar dissolution in the saprock and is attributed mainly to peri-glacial processes from 15 000 years ago. At tens of centimeters below the saprock-regolith interface, the porosity and surface area increase markedly as chlorite and illite begin to dissolve. These clay reactions contribute to the transformation of saprock to regolith. Throughout the regolith, intraparticle pores in chips connect to form larger interparticle pores and scattering changes from a mass fractal at depth to a surface fractal near the land surface. Pore geometry also changes from anisotropic at depth, perhaps related to pencil cleavage created in the rock by previous tectonic activity, to isotropic at the uppermost surface as clays weather. In the most weathered regolith, kaolinite and Fe-oxyhydroxides precipitate, blocking some connected pores. These precipitates, coupled with exposure of more quartz by clay weathering, contribute to the decreased mineral-pore interfacial area in the uppermost samples. These observations are consistent with conversion of bedrock to saprock to regolith at SSHO due to: (1) transport of reactants (e.g., water, O2) into primary pores and fractures created by tectonic events and peri-glacial effects; (2) mineral-water reactions and particle loss that increase porosity and the access of water into the rock. From deep to shallow, mineral-water reactions may change from largely transport-limited where porosity was set largely by ancient tectonic activity to kinetic-limited where porosity is changing due to climate-driven processes.


Environmental Science & Technology | 2013

CO2 Sorption to Subsingle Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction Measurements

Gernot Rother; Eugene S. Ilton; Dirk Wallacher; Thomas Hauβ; Herbert T. Schaef; Odeta Qafoku; Kevin M. Rosso; Andrew R. Felmy; Elizabeth G. Krukowski; Andrew G. Stack; Nico Grimm; Robert J. Bodnar

Geologic storage of CO(2) requires that the caprock sealing the storage rock is highly impermeable to CO(2). Swelling clays, which are important components of caprocks, may interact with CO(2) leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO(2) with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO(2) densities of ≈ 0.15 g/cm(3), followed by an approximately linear decrease of excess sorption to zero and negative values with increasing CO(2) bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO(2) are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO(2) in the clay pores is relatively stable over a wide range of CO(2) pressures at a given temperature, indicating the formation of a clay-CO(2) phase. At the excess sorption maximum, increasing CO(2) sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.


ACS Applied Materials & Interfaces | 2016

Effect of Metal Ion Intercalation on the Structure of MXene and Water Dynamics on its Internal Surfaces

Naresh C. Osti; Michael Naguib; Alireza Ostadhossein; Yu Xie; Paul R. C. Kent; Boris Dyatkin; Gernot Rother; William T. Heller; Adri C. T. van Duin; Yury Gogotsi; Eugene Mamontov

MXenes are a recently discovered class of 2D materials with an excellent potential for energy storage applications. Because MXene surfaces are hydrophilic and attractive interaction forces between the layers are relatively weak, water molecules can spontaneously intercalate at ambient humidity and significantly influence the key properties of this 2D material. Using complementary X-ray and neutron scattering techniques, we demonstrate that intercalation with potassium cations significantly improves structural homogeneity and water stability in MXenes. In agreement with molecular dynamics simulations, intercalated potassium ions reduce the water self-diffusion coefficient by 2 orders of magnitude, suggesting greater stability of hydrated MXene against changing environmental conditions.


Environmental Science & Technology | 2014

Pore-Size-Dependent Calcium Carbonate Precipitation Controlled by Surface Chemistry

Andrew G. Stack; Alejandro Fernandez-Martinez; Lawrence F. Allard; Jose Banuelos; Gernot Rother; Lawrence M. Anovitz; David R. Cole; Glenn A. Waychunas

Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media.


Environmental Science & Technology | 2016

Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

John M. Zachara; Susan L. Brantley; J. D. Chorover; Robert P. Ewing; Sebastien N. Kerisit; Chongxuan Liu; Edmund Perfect; Gernot Rother; Andrew G. Stack

Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a materials porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. Here we discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.


Nature Communications | 2016

Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks

Niko Kampman; Andreas Busch; Pieter Bertier; Jeroen Snippe; Suzanne Hangx; Vitaliy Pipich; Zhenyu Di; Gernot Rother; Jon F. Harrington; James P. Evans; A. Maskell; Hazel J. Chapman; Mike Bickle

Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of geological carbon storage. Here we describe mineral reaction fronts in a CO2 reservoir-caprock system exposed to CO2 over a timescale comparable with that needed for geological carbon storage. The propagation of the reaction front is retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ∼7 cm in ∼105 years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO2.


Journal of Chemical Physics | 2004

Confinement effect on the adsorption from a binary liquid system near liquid/liquid phase separation

Gernot Rother; Dirk Woywod; Martin Schoen; Gerhard H. Findenegg

The preferential adsorption of one component of a binary system at the inner surfaces of mesoporous silica glasses was studied in a wide composition range at temperatures close to liquid/liquid phase separation. Confinement effects on the adsorption were investigated by using three controlled-pore glass (CPG-10) materials of different mean pore size (10 to 50 nm). For the experimental system (2-butoxyethanol+water), which exhibits an upper miscibility gap, strong preferential adsorption of water occurs, as the coexistence curve is approached at bulk compositions, at which water is the minority component. In this strong adsorption regime the area-related surface excess amount of adsorbed water decreases with decreasing pore width, while the shift in the volume-related mean composition of the pore liquid shows an opposite trend, i.e., greatest deviation from bulk composition occurring in the most narrow pores. A simple mean-field lattice model of a liquid mixture confined by parallel walls is adopted to rationalize these experimental findings. This model reproduces the main findings of the confinement effect on the adsorption near liquid/liquid phase separation.


Langmuir | 2012

Direct measurements of pore fluid density by vibrating tube densimetry.

Miroslaw {Mirek} S Gruszkiewicz; Gernot Rother; David J. Wesolowski; David R. Cole; Dirk Wallacher

The densities of pore-confined fluids were measured for the first time by means of vibrating tube densimetry (VTD). A custom-built high-pressure, high-temperature vibrating tube densimeter was used to measure the densities of propane at subcritical and supercritical temperatures (between 35 and 97 °C) and carbon dioxide at supercritical temperatures (between 32 and 50 °C) saturating hydrophobic silica aerogel (0.2 g/cm(3), 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, supercritical isotherms of excess adsorption for CO(2) and the same porous solid were measured gravimetrically using a precise magnetically coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum and then decreased toward zero or negative values above the critical density of the bulk fluid. The isotherms of confined fluid density and excess adsorption obtained by VTD contain additional information. For instance, the maxima of excess adsorption occur below the critical density of the bulk fluid at the beginning of the plateau region in the total adsorption, marking the end of the transition of pore fluid to a denser, liquidlike pore phase. Compression of the confined fluid significantly beyond the density of the bulk fluid at the same temperature was observed even at subcritical temperatures. The effect of pore confinement on the liquid-vapor critical temperature of propane was less than ~1.7 K. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. Good quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Thus, it is demonstrated that vibrating tube densimetry is a novel experimental approach capable of providing directly the average density of pore-confined fluids, and hence complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess).


Archive | 2009

Structure and Dynamics of Fluids in Microporous and Mesoporous Earth and Engineered Materials

David R. Cole; Eugene Mamontov; Gernot Rother

The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometrical confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dynamical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 to 50 nm—the micro- and mesoporous regimes. Important factors influencing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid–surface interaction. While confinement of liquids in hydrophobic matrices, such as carbon nanotubes, or near the surfaces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and materials sciences usually contain oxide structural units and thus are hydrophilic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesoporous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered systems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Although studied less frequently, matrices such as artificial opals and chrysotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for comparing the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques that assess both structural modification and dynamical behavior. Quantitative understanding of the complex solid–fluid interactions under different thermodynamic situations will impact both the design of better substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).

Collaboration


Dive into the Gernot Rother's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence M. Anovitz

Virginia Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Susan L. Brantley

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

David J. Wesolowski

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixin Jin

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Sheng Dai

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ariel A. Chialvo

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Eugene Mamontov

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge