Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerold Feuer is active.

Publication


Featured researches published by Gerold Feuer.


Oncogene | 2005

Comparative biology of human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2

Gerold Feuer; Patrick L. Green

HTLV-1 and HTLV-2 are highly related complex retroviruses that have been studied intensely for nearly three decades because of their association with neoplasia, neuropathology, and/or their capacity to transform primary human T lymphocytes. The study of HTLV also represents an attractive model that has allowed investigators to dissect the mechanism of various cellular processes, several of which may be critical steps in HTLV-mediated pathogenesis. Both HTLV-1 and HTLV-2 can efficiently immortalize and transform T lymphocytes in cell culture and persist in infected individuals or experimental animals. However, the clinical manifestations of these two viruses differ significantly. HTLV-1 is associated with adult T-cell leukemia (ATL) and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In contrast, HTLV-2 is much less pathogenic with reports of only a few cases of variant hairy cell leukemia and neurological disease associated with infection. The limited number of individuals shown to harbor HTLV-2 in association with specific diseases has, to date, precluded convincing epidemiological demonstration of a definitive etiologic role of HTLV-2 in human disease. Therefore, it has become clear that comparative studies designed to elucidate the mechanisms by which HTLV-1 and HTLV-2 determine distinct outcomes are likely to provide fundamental insights into the initiation of multistep leukemogenesis.


Blood | 2010

Adult T-cell leukemia/lymphoma development in HTLV-1–infected humanized SCID mice

Prabal Banerjee; Adam Tripp; Michael D. Lairmore; Lindsey Crawford; Michelle Sieburg; Juan Carlos Ramos; William J. Harrington; Mark A. Beilke; Gerold Feuer

The molecular and genetic factors induced by human T-lymphotropic virus type-1 (HTLV-1) that initiate adult T-cell leukemia/lymphoma (ATLL) remain unclear, in part from the lack of an animal model that accurately recapitulates leukemogenesis. HTLV-1-infected humanized nonobese diabetic severe combined immunodeficiency (HU-NOD/SCID) mice were generated by inoculation of NOD/SCID mice with CD34(+) hematopoietic progenitor and stem cells (CD34(+) HP/HSCs) infected ex vivo with HTLV-1. HTLV-1-HU-NOD/SCID mice exclusively developed CD4(+) T-cell lymphomas with characteristics similar to ATLL and elevated proliferation of infected human stem cells (CD34(+)CD38(-)) in the bone marrow were observed in mice developing malignancies. Purified CD34(+) HP/HSCs from HTLV-1-infected patient peripheral blood mononuclear cells revealed proviral integrations suggesting viral infection of human bone marrow-derived stem cells. NOD/SCID mice reconstituted with CD34(+) HP/HSCs transduced with a lentivirus vector expressing the HTLV-1 oncoprotein (Tax1) also developed CD4(+) lymphomas. The recapitulation of a CD4(+) T-cell lymphoma in HU-NOD/SCID mice suggests that HSCs provide a viral reservoir in vivo and act as cellular targets for cell transformation in humans. This animal model of ATLL will provide an important tool for the identification of molecular and cellular events that control the initiation and progression of the lymphoma and potential therapeutic targets to block tumor development.


American Journal of Pathology | 2001

Humoral Hypercalcemia of Malignancy : Severe Combined Immunodeficient/Beige Mouse Model of Adult T-Cell Lymphoma Independent of Human T-Cell Lymphotropic Virus Type-1 Tax Expression

Virgile Richard; Michael D. Lairmore; Patrick L. Green; Gerold Feuer; Robert S. Erbe; Björn Albrecht; Celine D’Souza; Evan T. Keller; Jinlu Dai; Thomas J. Rosol

The majority of patients with adult T-cell leukemia/lymphoma (ATL) resulting from human T-cell lymphotropic virus type-1 (HTLV-1) infection develop humoral hypercalcemia of malignancy (HHM). We used an animal model using severe combined immunodeficient (SCID)/beige mice to study the pathogenesis of HHM. SCID/beige mice were inoculated intraperitoneally with a human ATL line (RV-ATL) and were euthanized 20 to 32 days after inoculation. SCID/beige mice with engrafted RV-ATL cells developed lymphoma in the mesentery, liver, thymus, lungs, and spleen. The lymphomas stained positively for human CD45RO surface receptor and normal mouse lymphocytes stained negatively confirming the human origin of the tumors. The ATL cells were immunohistochemically positive for parathyroid hormone-related protein (PTHrP). In addition, PTHrP mRNA was highly expressed in lymphomas when compared to MT-2 cells (HTLV-1-positive cell line). Mice with lymphoma developed severe hypercalcemia. Plasma PTHrP concentrations were markedly increased in mice with hypercalcemia, and correlated with the increase in plasma calcium concentrations. Bone densitometry and histomorphometry in lymphoma-bearing mice revealed significant bone loss because of a marked increase in osteoclastic bone resorption. RV-ATL cells contained 1.5 HTLV-1 proviral copies of the tax gene as determined by quantitative real-time polymerase chain reaction (PCR). However, tax expression was not detected by Western blot or reverse transcriptase (RT)-PCR in RV-ATL cells, which suggests that factors other than Tax are modulators of PTHrP gene expression. The SCID/beige mouse model mimics HHM as it occurs in ATL patients, and will be useful to investigate the regulation of PTHrP expression by ATL cells in vivo.


Journal of Virology | 2005

Induction of Cell Cycle Arrest by Human T-Cell Lymphotropic Virus Type 1 Tax in Hematopoietic Progenitor (CD34+) Cells: Modulation of p21cip1/waf1 and p27kip1 Expression

Adam Tripp; Prabal Banerjee; Michelle Sieburg; Vicente Planelles; Fengzhi Li; Gerold Feuer

ABSTRACT Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, an aggressive CD4+ malignancy. Although HTLV-2 is highly homologous to HTLV-1, infection with HTLV-2 has not been associated with lymphoproliferative disorders. Lentivirus-mediated transduction of CD34+ cells with HTLV-1 Tax (Tax1) induced G0/G1 cell cycle arrest and resulted in the concomitant suppression of multilineage hematopoiesis in vitro. Tax1 induced transcriptional upregulation of the cdk inhibitors p21cip1/waf1 (p21) and p27kip1 (p27), and marked suppression of hematopoiesis in immature (CD34+/CD38−) hematopoietic progenitor cells in comparison to CD34+/CD38+ cells. HTLV-1 infection of CD34+ cells also induced p21 and p27 expression. Tax1 also protected CD34+ cells from serum withdrawal-mediated apoptosis. In contrast, HTLV-2 Tax (Tax2) did not detectably alter p21 or p27 gene expression, failed to induce cell cycle arrest, failed to suppress hematopoiesis in CD34+ cells, and did not protect cells from programmed cell death. A Tax2/Tax1 chimera encoding the C-terminal 53 amino acids of Tax1 fused to Tax2 (Tax221) displayed a phenotype in CD34+ cells similar to that of Tax1, suggesting that unique domains encoded within the C terminus of Tax1 may account for the phenotypes displayed in human hematopoietic progenitor cells. These remarkable differences in the activities of Tax1 and Tax2 in CD34+ hematopoietic progenitor cells may underlie the sharp differences observed in the pathogenesis resulting from infection with HTLV-1 and HTLV-2.


Journal of Virology | 2003

Human T-cell lymphotropic virus type 1 p12I enhances interleukin-2 production during T-cell activation.

Wei Ding; Seung-jae Kim; Amrithraj M. Nair; Bindhu Michael; Kathleen Boris-Lawrie; Adam Tripp; Gerold Feuer; Michael D. Lairmore

ABSTRACT Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL) and a variety of lymphoproliferative disorders. The early virus-cell interactions that determine a productive infection remain unclear. However, it is well recognized that T-cell activation is required for effective retroviral integration into the host cell genome and subsequent viral replication. The HTLV-1 pX open reading frame I encoding protein, p12I, is critical for the virus to establish persistent infection in vivo and for infection in quiescent primary lymphocytes in vitro. p12I localizes in the endoplasmic reticulum (ER) and cis-Golgi apparatus, increases intracellular calcium and activates nuclear factor of activated T cells (NFAT)-mediated transcription. To clarify the function of p12I, we tested the production of IL-2 from Jurkat T cells and peripheral blood mononuclear cells (PBMC) expressing p12I. Lentiviral vector expressed p12I in Jurkat T cells enhanced interleukin-2 (IL-2) production in a calcium pathway-dependent manner during T-cell receptor (TCR) stimulation. Expression of p12I also induced higher NFAT-mediated reporter gene activities during TCR stimulation in Jurkat T cells. In contrast, p12 expression in PBMC elicited increased IL-2 production in the presence of phorbal ester stimulation, but not during TCR stimulation. Finally, the requirement of ER localization for p12I-mediated NFAT activation was demonstrated and two positive regions and two negative regions in p12I were identified for the activation of this transcription factor by using p12I truncation mutants. These results are the first to indicate that HTLV-1, an etiologic agent associated with lymphoproliferative diseases, uses a conserved accessory protein to induce T-cell activation, an antecedent to efficient viral infection.


Retrovirology | 2004

Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes

Bindhu Michael; Amrithraj M. Nair; Hajime Hiraragi; Lei Shen; Gerold Feuer; Kathleen Boris-Lawrie; Michael D. Lairmore

BackgroundHuman T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13II and p30II, which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30II differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export.ResultsHerein, we further characterized the role of p30II in regulation of cellular gene expression, using stable p30II expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30II expressing Jurkat T cells. In all categories, p30II appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes.ConclusionsWe are the first to demonstrate that p30II, while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo.


Journal of Virology | 2004

Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2 Tax Oncoproteins Modulate Cell Cycle Progression and Apoptosis

Michelle Sieburg; Adam Tripp; Jung-Woo Ma; Gerold Feuer

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. HTLV-2, although highly related to HTLV-1 at the molecular level, has not been conclusively linked to development of lymphoproliferative disorders. Differences between the biological activities of the respective tax gene products (Tax1 and Tax2) may be one factor which accounts for the differential pathogenicities associated with infection. To develop an in vitro model to investigate and compare the effects of constitutive expression of Tax1 and Tax2, Jurkat T-cell lines were infected with lentivirus vectors encoding Tax1 and Tax2 in conjunction with green fluorescent protein, and stably transduced clonal cell lines were generated by serial dilution in the absence of drug selection. Jurkat cells that constitutively express Tax1 and Tax2 (Tax1/Jurkat and Tax2/Jurkat, respectively) showed notably reduced kinetics of cellular replication, and Tax1 inhibited cellular replication to a higher degree in comparison to Tax2. Tax1 markedly activated transcription from the cdk inhibitor p21cip1/waf1 promoter in comparison to Tax2, suggesting that upregulation of p21cip1/waf1 may account for the differential inhibition of cellular replication kinetics displayed by Tax1/Jurkat and Tax2/Jurkat cells. The presence of binucleated and multinucleated cells, reminiscent of large lymphocytes with cleaved or cerebriform nuclei often seen in HTLV-1- and -2-seropositive patients, was noted in cultures expressing Tax1 and Tax2. Although Tax1 and Tax2 expression mediated elevated resistance to apoptosis in Jurkat cells after serum deprivation, Tax1 was unique in protection from apoptosis after exposure to camptothecin and etoposide, inhibitors of topoisomerase I and II, respectively. Characterization of the unique phenotypes displayed by Tax1 and Tax2 in vitro will provide information as to the relative roles of these oncoproteins and their contribution to HTLV-1 and -2 pathogenesis in vivo.


Journal of Virology | 2003

Human T-Cell Leukemia Virus Type 1 Tax Oncoprotein Suppression of Multilineage Hematopoiesis of CD34+ Cells In Vitro

Adam Tripp; Yingxian Liu; Michelle Sieburg; JoAnne Montalbano; Stephen Wrzesinski; Gerold Feuer

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are highly related viruses that differ in disease manifestation. HTLV-1 is the etiologic agent of adult T-cell leukemia and lymphoma, an aggressive clonal malignancy of human CD4-bearing T lymphocytes. Infection with HTLV-2 has not been conclusively linked to lymphoproliferative disorders. We previously showed that human hematopoietic progenitor (CD34+) cells can be infected by HTLV-1 and that proviral sequences were maintained after differentiation of infected CD34+ cells in vitro and in vivo. To investigate the role of the Tax oncoprotein of HTLV on hematopoiesis, bicistronic lentiviral vectors were constructed encoding the HTLV-1 or HTLV-2 tax genes (Tax1 and Tax2, respectively) and the green fluorescent protein marker gene. Human hematopoietic progenitor (CD34+) cells were infected with lentivirus vectors, and transduced cells were cultured in a semisolid medium permissive for the development of erythroid, myeloid, and primitive progenitor colonies. Tax1-transduced CD34+ cells displayed a two- to fivefold reduction in the total number of hematopoietic clonogenic colonies that arose in vitro, in contrast to Tax2-transduced cells, which showed no perturbation of hematopoiesis. The ratio of colony types that developed from Tax1-transduced CD34+ cells remained unaffected, suggesting that Tax1 inhibited the maturation of relatively early, uncommitted hematopoietic stem cells. Since previous reports have linked Tax1 expression with initiation of apoptosis, lentiviral vector-mediated transduction of Tax1 or Tax2 was investigated in CEM and Jurkat T-cell lines. Ectopic expression of either Tax1 or Tax2 failed to induce apoptosis in T-cell lines. These data demonstrate that Tax1 expression perturbs development and maturation of pluripotent hematopoietic progenitor cells, an activity that is not displayed by Tax2, and that the suppression of hematopoiesis is not attributable to induction of apoptosis. Since hematopoietic progenitor cells may serve as a latently infected reservoir for HTLV infection in vivo, the different abilities of HTLV-1 and -2 Tax to suppress hematopoiesis may play a role in the respective clinical outcomes after infection with HTLV-1 or -2.


Leukemia Research | 2002

Engraftment and tumorigenesis of HTLV-1 transformed T cell lines in SCID/bg and NOD/SCID mice

Yingxian Liu; Kiran Dole; James R. L. Stanley; Virgile Richard; Thomas J. Rosol; Lee Ratner; Michael D. Lairmore; Gerold Feuer

Human T cell leukemia/lymphoma virus type-1 (HTLV-1) is recognized as the etiological agent of adult T cell leukemia (ATL). Although HTLV-1 can immortalize human lymphocytes in culture, identification of molecular events leading to tumorigenesis after HTLV-1 infection remain elusive. SCID/bg and NOD/SCID mice have reduced natural killer (NK) cell activity and were inoculated intraperitoneally with HTLV-1 transformed cells to refine and characterize the SCID mouse as a small animal model for investigation of HTLV-1 tumorigenesis. HTLV-1 transformed cell lines originally derived by cocultivation of uninfected peripheral blood mononuclear cells (PBMC) with lethally irradiated leukemic cells from patient samples (SLB-1, MT-2 and HT-1-RV) were lymphomagenic when inoculated into NOD/SCID mice. In contrast, immortalized cell lines generated by transfection PBMC with an infectious molecular clone of HTLV-1 (ACH or ACH.p12) were not tumorigenic. The differing behaviors of HTLV-1 infected cell lines in NOD/SCID mice indicates that viral infection and immortalization of human PBMC for growth in culture is not sufficient for induction of a tumorigenic phenotype. The higher level of engraftment of HTLV-1 transformed cell lines in NOD/SCID mice suggests that this is an effective animal model to investigate molecular determinants of HTLV-1 lymphomagenesis.


Retrovirology | 2010

Hematopoietic stem cells and retroviral infection

Prabal Banerjee; Lindsey Crawford; Elizabeth Samuelson; Gerold Feuer

Retroviral induced malignancies serve as ideal models to help us better understand the molecular mechanisms associated with the initiation and progression of leukemogenesis. Numerous retroviruses including AEV, FLV, M-MuLV and HTLV-1 have the ability to infect hematopoietic stem and progenitor cells, resulting in the deregulation of normal hematopoiesis and the development of leukemia/lymphoma. Research over the last few decades has elucidated similarities between retroviral-induced leukemogenesis, initiated by deregulation of innate hematopoietic stem cell traits, and the cancer stem cell hypothesis. Ongoing research in some of these models may provide a better understanding of the processes of normal hematopoiesis and cancer stem cells. Research on retroviral induced leukemias and lymphomas may identify the molecular events which trigger the initial cellular transformation and subsequent maintenance of hematologic malignancies, including the generation of cancer stem cells. This review focuses on the role of retroviral infection in hematopoietic stem cells and the initiation, maintenance and progression of hematological malignancies.

Collaboration


Dive into the Gerold Feuer's collaboration.

Top Co-Authors

Avatar

Prabal Banerjee

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Sieburg

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Adam Tripp

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Lindsey Crawford

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosemary Rochford

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen Wrzesinski

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Samuelson

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge