Gerold Schwarz
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerold Schwarz.
Nature Immunology | 2000
Lars Stoltze; Markus Schirle; Gerold Schwarz; Christian J. Schröter; Michael W. Thompson; Louis B. Hersh; Hubert Kalbacher; Stefan Stevanovic; Hans-Georg Rammensee; Hansjörg Schild
The proteasome generates exact major histocompatibility complex (MHC) class I ligands as well as NH2-terminal-extended precursor peptides. The proteases responsible for the final NH2-terminal trimming of the precursor peptides had, until now, not been determined. By using specific selective criteria we purified two cytosolic proteolytic activities, puromycin-sensitive aminopeptidase and bleomycin hydrolase. These proteases could remove NH2-terminal amino acids from the vesicular stomatitis virus nucleoprotein cytotoxic T cell epitope 52–59 (RGYVYQGL) resulting, in combination with proteasomes, in the generation of the correct epitope. Our data provide evidence for the existence of redundant systems acting downstream of the proteasome in the antigen-processing pathway for MHC class I molecules.
American Journal of Pathology | 2002
Claudia A. Müller; Jasmina Markovic-Lipkovski; Tatjana Klatt; Jutta Gamper; Gerold Schwarz; Hermann Beck; Martin Deeg; Hubert Kalbacher; Susanne Widmann; Johannes T. Wessels; Volker Becker; Gerhard A. Müller; Thomas Flad
The α-defensins human neutrophil peptides (HNPs)-1, -2, and -3 have been described as cytotoxic peptides with restricted expression in neutrophils and in some lymphocytes. In this study we report that HNPs-1, -2, and -3 are also expressed in renal cell carcinomas (RCCs). Several RCC lines were found to express mRNA as well as the specific peptides of HNP-1, -2, and -3 demonstrated by reverse transcriptase-polymerase chain reaction, mass spectrometric, and flow cytometric analyses. At physiological concentrations HNPs-1, -2, and -3 stimulated cell proliferation of selected RCC lines in vitro but at high concentrations were cytotoxic for all RCC lines tested. As in RCC lines, α-defensins were also detected in vivo in malignant epithelial cells of 31 RCC tissues in addition to their expected presence in neutrophils. In most RCC cases randomly, patchy immunostaining of α-defensins on epithelial cells surrounding neutrophils was seen, but in six tumors of higher grade malignancy all tumor cells were diffusely stained. Cellular necrosis observed in RCC tissues in association with extensive patches of HNP-1, -2, and -3, seemed to be related to high concentrations of α-defensins. The in vitro and in vivo findings suggest that α-defensins are frequent peptide constituents of malignant epithelial cells in RCC with a possible direct influence on tumor proliferation.
European Journal of Immunology | 2001
Hermann Beck; Gerold Schwarz; Christian J. Schröter; Martin Deeg; Daniel Baier; Stefan Stevanovic; Ekkehard Weber; Christoph Driessen; Hubert Kalbacher
The biochemical characterization of antigen degradation is an important basis for a better understanding of both the immune response and autoimmune diseases mediated by MHC class II molecules.In this study we used high‐performance liquid chromatography and mass spectrometry to analyze the processing of myelin basic protein (MBP), a potential autoantigen implicated in the pathogenesis ofmultiple sclerosis. We resolved the kinetics of MBP processing by lysosomal extracts or purified endocytic proteases, identified the major cleavage sites during this process and assigned them to the activity of proteolytic enzymes. Proteolytic processing of MBP is mostly guided along the hydrophobic regions of the protein. It is initiated by two proteolytic steps (after N92 and S110) that are performed by an asparagine‐specific endopeptidase (AEP) and by cathepsin (Cat) S, respectively. The resulting processing intermediates are converted into more than 60 different species of 20–40‐mers due to the activity of endopeptidases including CatS, D and L. The fragments thus generated are subsequently degraded by C‐ or N‐terminal trimming. Strikingly, the initial cleavages during MBP processing affect two immunodominant regions of the potential autoantigen [MBP(85–99) and MBP(111‐129)] in an inverse manner. CatS directly generates the N terminus of the epitope MBP(111–129)in large quantities during the initial phase of processing, which might explain the immunogenicity of this region in spite of its relatively poor binding to HLA‐DR4. In contrast, the dominant cleavage by AEP mediates the destruction of MBP(85–99) unless the epitope is protected, e.g. by binding to HLA‐DR. Our results thus characterize the proteolytic events during processing of MBP on a molecular level and suggest a biochemical basis for the immunogenicity of the immunodominant epitopes, which could serve as a guideline for future therapeutic strategies.
Journal of Bacteriology | 2005
Heidi Neugebauer; Christina Herrmann; Winfried Kammer; Gerold Schwarz; Alfred Nordheim; Volkmar Braun
Analysis of the genome sequence of Caulobacter crescentus predicts 67 TonB-dependent outer membrane proteins. To demonstrate that among them are proteins that transport nutrients other than chelated Fe(3+) and vitamin B(12)-the substrates hitherto known to be transported by TonB-dependent transporters-the outer membrane protein profile of cells grown on different substrates was determined by two-dimensional electrophoresis. Maltose induced the synthesis of a hitherto unknown 99.5-kDa protein, designated here as MalA, encoded by the cc2287 genomic locus. MalA mediated growth on maltodextrins and transported [(14)C]maltodextrins from [(14)C]maltose to [(14)C]maltopentaose. [(14)C]maltose transport showed biphasic kinetics, with a fast initial rate and a slower second rate. The initial transport had a K(d) of 0.2 microM, while the second transport had a K(d) of 5 microM. It is proposed that the fast rate reflects binding to MalA and the second rate reflects transport into the cells. Energy depletion of cells by 100 microM carbonyl cyanide 3-chlorophenylhydrazone abolished maltose binding and transport. Deletion of the malA gene diminished maltose transport to 1% of the wild-type malA strain and impaired transport of the larger maltodextrins. The malA mutant was unable to grow on maltodextrins larger than maltotetraose. Deletion of two C. crescentus genes homologous to the exbB exbD genes of Escherichia coli abolished [(14)C]maltodextrin binding and transport and growth on maltodextrins larger than maltotetraose. These mutants also showed impaired growth on Fe(3+)-rhodotorulate as the sole iron source, which provided evidence of energy-coupled transport. Unexpectedly, a deletion mutant of a tonB homolog transported maltose at the wild-type rate and grew on all maltodextrins tested. Since Fe(3+)-rhodotorulate served as an iron source for the tonB mutant, an additional gene encoding a protein with a TonB function is postulated. Permeation of maltose and maltotriose through the outer membrane of the C. crescentus malA mutant was slower than permeation through the outer membrane of an E. coli lamB mutant, which suggests a low porin activity in C. crescentus. The pores of the C. crescentus porins are slightly larger than those of E. coli K-12, since maltotetraose supported growth of the C. crescentus malA mutant but failed to support growth of the E. coli lamB mutant. The data are consistent with the proposal that binding of maltodextrins to MalA requires energy and MalA actively transports maltodextrins with K(d) values 1,000-fold smaller than those for the LamB porin and 100-fold larger than those for the vitamin B(12) and ferric siderophore outer membrane transporters. MalA is the first example of an outer membrane protein for which an ExbB/ExbD-dependent transport of a nutrient other than iron and vitamin B(12) has been demonstrated.
Journal of Immunology | 2004
Timo Burster; Alexander Beck; Eva Tolosa; Viviana Marin-Esteban; Olaf Rötzschke; Kirsten Falk; Alfred Lautwein; Michael Reich; Jens Brandenburg; Gerold Schwarz; Heinz Wiendl; Arthur Melms; Rainer Lehmann; Stefan Stevanovic; Hubert Kalbacher; Christoph Driessen
The asparagine-specific endoprotease (AEP) controls lysosomal processing of the potential autoantigen myelin basic protein (MBP) by human B lymphoblastoid cells, a feature implicated in the immunopathogenesis of multiple sclerosis. In this study, we demonstrate that freshly isolated human B lymphocytes lack significant AEP activity and that cleavage by AEP is dispensable for proteolytic processing of MBP in this type of cell. Instead, cathepsin (Cat) G, a serine protease that is not endogenously synthesized by B lymphocytes, is internalized from the plasma membrane and present in lysosomes from human B cells where it represents a major functional constituent of the proteolytic machinery. CatG initialized and dominated the destruction of intact MBP by B cell-derived lysosomal extracts, degrading the immunodominant MBP epitope and eliminating both its binding to MHC class II and a MBP-specific T cell response. Degradation of intact MBP by CatG was not restricted to a lysosomal environment, but was also performed by soluble CatG. Thus, the abundant protease CatG might participate in eliminating the immunodominant determinant of MBP. Internalization of exogenous CatG represents a novel mechanism of professional APC to acquire functionally dominant proteolytic activity that complements the panel of endogenous lysosomal enzymes.
Journal of Leukocyte Biology | 2004
Alfred Lautwein; Marianne Kraus; Michael Reich; Timo Burster; Jens Brandenburg; Herman S. Overkleeft; Gerold Schwarz; Winfried Kammer; Ekkehard Weber; Hubert Kalbacher; Alfred Nordheim; Christoph Driessen
Endocytic proteolysis represents a major functional component of the major histocompatibility complex class II antigen‐presentation machinery. Although transport and assembly of class II molecules in the endocytic compartment are well characterized, we lack information about the pattern of endocytic protease activity along this pathway. Here, we used chemical tools that visualize endocytic proteases in an activity‐dependent manner in combination with subcellular fractionation to dissect the subcellular distribution of the major cathepsins (Cat) CatS, CatB, CatH, CatD, CatC, and CatZ as well as the asparagine‐specific endoprotease (AEP) in human B‐lymphoblastoid cells (BLC). Endocytic proteases were distributed in two distinct patterns: CatB and CatZ were most prominent in early and late endosomes but absent from lysosomes, and CatH, CatS, CatD, CatC, and AEP distributed between late endosomes and lysosomes, suggesting that CatB and CatZ might be involved in the initial proteolytic attack on a given antigen. The entire spectrum of protease activity colocalized with human leukocyte antigen‐DM and the C‐terminal and N‐terminal processing of invariant chain (Ii) in late endosomes. CatS was active in all endocytic compartments. Surprisingly and in contrast with results from dendritic cells, inhibition of CatS activity by leucine–homophenylalanine–vinylsulfone‐phenol prevented N‐terminal processing of Ii but did not alter the subcellular trafficking or surface delivery of class II complexes, as deferred from pulse‐chase analysis in combination with subcellular fractionation and biotinylation of cell‐surface protein. Thus, BLC contain distinct activity patterns of proteases in endocytic compartments and regulate the intracellular transport and surface‐delivery of class II in a CatS‐independent manner.
Biological Chemistry | 2002
Gerold Schwarz; Jens Brandenburg; Michael Reich; Timo Burster; Christoph Driessen; Hubert Kalbacher
Abstract The mammalian legumain, also called asparaginyl endopeptidase (AEP), is critically involved in the processing of bacterial antigens for MHC class II presentation. In order to investigate the substrate specificity of AEP in the P1 position, we created a peptide library and digested it with purified pig kidney AEP. Digestion was less efficient only when proline was in the P1 position. Maximum AEP activity was found in lysosomal fractions of different types of antigen presenting cells (APC). When the multiple sclerosisassociated autoantigen myelin basic protein (MBP) was digested with AEP, the immunodominant epitope 8399 was destroyed. Myoglobin as an alternative substrate was AEP resistant. These results suggest an important, but not necessarily critical role for AEP in lysosomal antigen degradation.
Biological Chemistry | 2002
Heide Schmid; Ramona Sauerbrei; Gerold Schwarz; Ekkehard Weber; Hubert Kalbacher; Christoph Driessen
Abstract Endosomal and lysosomal fractions of human monocytes/ macrophages prepared from buffy coats were analyzed for activities of cathepsins B, L and S, and expression of cathepsin proteins along with major histocompatibility complex class I and class II molecules under control and immunomodulatory conditions. While the total activity of cathepsins B, L, and S together remained unchanged in lysates of control cells during culture for 72 h, the subcellular distribution of cathepsin activities underwent a shift from a predominantly endosomal localization in freshly isolated cells to a lysosomal pattern after 72 h of culture. Interferonγ treatment for 72 h resulted in an upregulation of both major histocompatibility complex proteins and cathepsins with differential changes in cathepsin B, L and S activities in endosomes versus lysosomes. These changes suggest a remodeling of the endocytic machinery and imply different functions of cathepsins B, L and S during monocyte differentiation.
Epilepsia | 2005
Heike Junker; Kira Spate; Yalikun Suofu; Reinhard Walther; Gerold Schwarz; Winfried Kammer; Alfred Nordheim; Lary C. Walker; Uwe Runge; Christof Kessler; Aurel Popa-Wagner
Summary: Purpose: Kindled seizures are widely used to model epileptogenesis, but the molecular mechanisms underlying the attainment of kindling status are largely unknown. Recently we showed that achievement of kindling status in the Sprague–Dawley rat is associated with a critical developmental interval of 25 ± 1 days; the identification of this long, well‐defined developmental interval for inducing kindling status makes possible a dissection of the cellular and genetic events underlying this phenomenon and its relation to normal and pathologic brain function.
Blood | 2007
Stefan Balabanov; Artur Gontarewicz; Patrick Ziegler; Ulrike Hartmann; Winfried Kammer; Mhairi Copland; Ute Brassat; Martin Priemer; Ilona Hauber; Thomas Wilhelm; Gerold Schwarz; Lothar Kanz; Carsten Bokemeyer; Joachim Hauber; Tessa L. Holyoake; Alfred Nordheim; Tim H. Brümmendorf