Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerome Breen is active.

Publication


Featured researches published by Gerome Breen.


Nature Genetics | 2008

Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder

Manuel A. Ferreira; Michael Conlon O'Donovan; Ian Richard Jones; Douglas M. Ruderfer; Lisa Jones; Jinbo Fan; George Kirov; Roy H. Perlis; Elaine K. Green; Jordan W. Smoller; Detelina Grozeva; Jennifer Stone; Ivan Nikolov; Marian Lindsay Hamshere; Vishwajit L. Nimgaonkar; Valentina Moskvina; Michael E. Thase; Sian Caesar; Gary S. Sachs; Jennifer Franklin; Katherine Gordon-Smith; Kristin Ardlie; Stacey Gabriel; Christine Fraser; Brendan Blumenstiel; Matthew DeFelice; Gerome Breen; Michael Gill; Derek W. Morris; Amanda Elkin

To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 × 10−9) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 × 10−8, rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.


Archives of General Psychiatry | 2010

Association of Plasma Clusterin Concentration With Severity, Pathology, and Progression in Alzheimer Disease

Madhav Thambisetty; Andrew Simmons; Latha Velayudhan; Abdul Hye; James J. Campbell; Yi Zhang; Lars Olof Wahlund; Eric Westman; Anna Kinsey; Andreas Güntert; Petroula Proitsi; John Powell; Mirsada Causevic; Richard Killick; Katie Lunnon; Steven Lynham; Martin Broadstock; Fahd Choudhry; David R. Howlett; Robert J. Williams; Sally I. Sharp; Cathy Mitchelmore; Catherine Tunnard; Rufina Leung; Catherine Foy; Darragh O'Brien; Gerome Breen; Simon J. Furney; Malcolm Ward; Iwona Kloszewska

CONTEXT Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD). OBJECTIVE To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach. DESIGN Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model. SETTING A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging. PARTICIPANTS Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging. MAIN OUTCOME MEASURES Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid. RESULTS Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-beta burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques. CONCLUSIONS These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.


Molecular Psychiatry | 2005

BDNF gene is a risk factor for schizophrenia in a Scottish population.

M. Neves-Pereira; John Kwok Shing Cheung; Alireza Pasdar; Feng Zhang; Gerome Breen; P Yates; Maggie Sinclair; Caroline Crombie; Nicholas Walker; D. St Clair

Schizophrenia is a severe psychiatric disease with a strong genetic component. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of schizophrenia and bipolar (BP) disorders. The present study has examined two polymorphisms in linkage disequilibrium in the BDNF gene, which have been variously reported as associated with schizophrenia and BP. In our study, 321 probands with a primary diagnosis of schizophrenia or schizoaffective disorder, and 263 with a diagnosis of bipolar affective disorder, were examined together with 350 controls drawn from the same geographical region of Scotland. The val66met single-nucleotide polymorphism (SNP) showed significant (P=0.005) association for valine (allele G) with schizophrenia but not bipolar disorder. Haplotype analysis of val/met SNP and a dinucleotide repeat polymorphism in the putative promoter region revealed highly significant (P<1 × 10−8) under-representation of the methionine or met-1 haplotype in the schizophrenic but not the BP population. We conclude that, although the val66met polymorphism has been reported to alter gene function, the risk may depend upon the haplotypic background on which the val/met variant is carried.


Neuropsychopharmacology | 2013

Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline 'predictors' and longitudinal 'targets'.

Annamaria Cattaneo; Massimo Gennarelli; Rudolf Uher; Gerome Breen; Anne Farmer; Katherine J. Aitchison; Ian Craig; Christoph Anacker; Patricia A Zunsztain; Peter McGuffin; Carmine M. Pariante

To improve the ‘personalized-medicine’ approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants (‘predictors’), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment (‘targets’). In this study, we tested the leukocyte mRNA expression levels of genes belonging to glucocorticoid receptor (GR) function (FKBP-4, FKBP-5, and GR), inflammation (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-7, IL-8, IL-10, macrophage inhibiting factor (MIF), and tumor necrosis factor (TNF)-α), and neuroplasticity (brain-derived neurotrophic factor (BDNF), p11 and VGF), in healthy controls (n=34) and depressed patients (n=74), before and after 8 weeks of treatment with escitalopram or nortriptyline, as part of the Genome-based Therapeutic Drugs for Depression study. Non-responders had higher baseline mRNA levels of IL-1β (+33%), MIF (+48%), and TNF-α (+39%). Antidepressants reduced the levels of IL-1β (−6%) and MIF (−24%), and increased the levels of GR (+5%) and p11 (+8%), but these changes were not associated with treatment response. In contrast, successful antidepressant response was associated with a reduction in the levels of IL-6 (−9%) and of FKBP5 (−11%), and with an increase in the levels of BDNF (+48%) and VGF (+20%)—that is, response was associated with changes in genes that did not predict, at the baseline, the response. Our findings indicate a dissociation between ‘predictors’ and ‘targets’ of antidepressant responders. Indeed, while higher levels of proinflammatory cytokines predict lack of future response to antidepressants, changes in inflammation associated with antidepressant response are not reflected by all cytokines at the same time. In contrast, modulation of the GR complex and of neuroplasticity is needed to observe a therapeutic antidepressant effect.


American Journal of Psychiatry | 2010

Genome-Wide Association Study of Major Recurrent Depression in the U.K. Population

Cathryn M. Lewis; Mandy Y.M. Ng; Amy W. Butler; Sarah Cohen-Woods; Rudolf Uher; Katrina Pirlo; Michael E. Weale; Alexandra Schosser; Ursula M. Paredes; Margarita Rivera; Nicholas John Craddock; Michael John Owen; Lisa A. Jones; Ian Richard Jones; Ania Korszun; Katherine J. Aitchison; Jianxin Shi; John P. Quinn; Alasdair MacKenzie; Peter Vollenweider; Gérard Waeber; Simon Heath; Mark Lathrop; Pierandrea Muglia; Michael R. Barnes; John C. Whittaker; Frederica Tozzi; Florian Holsboer; Martin Preisig; Anne Farmer

OBJECTIVE Studies of major depression in twins and families have shown moderate to high heritability, but extensive molecular studies have failed to identify susceptibility genes convincingly. To detect genetic variants contributing to major depression, the authors performed a genome-wide association study using 1,636 cases of depression ascertained in the U.K. and 1,594 comparison subjects screened negative for psychiatric disorders. METHOD Cases were collected from 1) a case-control study of recurrent depression (the Depression Case Control [DeCC] study; N=1346), 2) an affected sibling pair linkage study of recurrent depression (probands from the Depression Network [DeNT] study; N=332), and 3) a pharmacogenetic study (the Genome-Based Therapeutic Drugs for Depression [GENDEP] study; N=88). Depression cases and comparison subjects were genotyped at Centre National de Génotypage on the Illumina Human610-Quad BeadChip. After applying stringent quality control criteria for missing genotypes, departure from Hardy-Weinberg equilibrium, and low minor allele frequency, the authors tested for association to depression using logistic regression, correcting for population ancestry. RESULTS Single nucleotide polymorphisms (SNPs) in BICC1 achieved suggestive evidence for association, which strengthened after imputation of ungenotyped markers, and in analysis of female depression cases. A meta-analysis of U.K. data with previously published results from studies in Munich and Lausanne showed some evidence for association near neuroligin 1 (NLGN1) on chromosome 3, but did not support findings at BICC1. CONCLUSIONS This study identifies several signals for association worthy of further investigation but, as in previous genome-wide studies, suggests that individual gene contributions to depression are likely to have only minor effects, and very large pooled analyses will be required to identify them.


Neuropsychopharmacology | 2013

Candidate Genes Expression Profile Associated with Antidepressants Response in the GENDEP Study

Annamaria Cattaneo; Massimo Gennarelli; Rudolf Uher; Gerome Breen; Anne Farmer; Katherine J. Aitchison; Ian Craig; Christoph Anacker; Patricia A. Zunszain; Peter McGuffin; Carmine M. Pariante

To improve the ‘personalized-medicine’ approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants (‘predictors’), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment (‘targets’). In this study, we tested the leukocyte mRNA expression levels of genes belonging to glucocorticoid receptor (GR) function (FKBP-4, FKBP-5, and GR), inflammation (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-7, IL-8, IL-10, macrophage inhibiting factor (MIF), and tumor necrosis factor (TNF)-α), and neuroplasticity (brain-derived neurotrophic factor (BDNF), p11 and VGF), in healthy controls (n=34) and depressed patients (n=74), before and after 8 weeks of treatment with escitalopram or nortriptyline, as part of the Genome-based Therapeutic Drugs for Depression study. Non-responders had higher baseline mRNA levels of IL-1β (+33%), MIF (+48%), and TNF-α (+39%). Antidepressants reduced the levels of IL-1β (−6%) and MIF (−24%), and increased the levels of GR (+5%) and p11 (+8%), but these changes were not associated with treatment response. In contrast, successful antidepressant response was associated with a reduction in the levels of IL-6 (−9%) and of FKBP5 (−11%), and with an increase in the levels of BDNF (+48%) and VGF (+20%)—that is, response was associated with changes in genes that did not predict, at the baseline, the response. Our findings indicate a dissociation between ‘predictors’ and ‘targets’ of antidepressant responders. Indeed, while higher levels of proinflammatory cytokines predict lack of future response to antidepressants, changes in inflammation associated with antidepressant response are not reflected by all cytokines at the same time. In contrast, modulation of the GR complex and of neuroplasticity is needed to observe a therapeutic antidepressant effect.


Molecular Psychiatry | 2014

A genome-wide association study of anorexia nervosa

Vesna Boraska; Jab Floyd; Lorraine Southam; N W Rayner; Ioanna Tachmazidou; Stephanie Zerwas; Osp Davis; Sietske G. Helder; R Burghardt; K Egberts; Stefan Ehrlich; Susann Scherag; Nicolas Ramoz; Judith Hendriks; Eric Strengman; A. van Elburg; A Bruson; Maurizio Clementi; M Forzan; E Tenconi; Elisa Docampo; Geòrgia Escaramís; A Rajewski; A Slopien; Leila Karhunen; Ingrid Meulenbelt; Mario Maj; Artemis Tsitsika; L Slachtova; Zeynep Yilmaz

Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge–purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10−7) in SOX2OT and rs17030795 (P=5.84 × 10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10−6) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10−6) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10−6), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.


Nature Neuroscience | 2016

Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders

Tarjinder Singh; Mitja I. Kurki; David Curtis; Shaun Purcell; Lucy Crooks; Jeremy McRae; Jaana Suvisaari; Himanshu Chheda; Douglas Blackwood; Gerome Breen; Olli Pietiläinen; Sebastian S. Gerety; Muhammad Ayub; Moira Blyth; Trevor Cole; David A. Collier; Eve L. Coomber; Nicholas John Craddock; Mark J. Daly; John Danesh; Marta DiForti; Alison Foster; Nelson B. Freimer; Daniel H. Geschwind; Mandy Johnstone; Shelagh Joss; G. Kirov; Jarmo Körkkö; Outi Kuismin; Peter Holmans

By analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls and 1,077 trios, we identified a genome-wide significant association between rare loss-of-function (LoF) variants in SETD1A and risk for schizophrenia (P = 3.3 × 10−9). We found only two heterozygous LoF variants in 45,376 exomes from individuals without a neuropsychiatric diagnosis, indicating that SETD1A is substantially depleted of LoF variants in the general population. Seven of the ten individuals with schizophrenia carrying SETD1A LoF variants also had learning difficulties. We further identified four SETD1A LoF carriers among 4,281 children with severe developmental disorders and two more carriers in an independent sample of 5,720 Finnish exomes, both with notable neuropsychiatric phenotypes. Together, our observations indicate that LoF variants in SETD1A cause a range of neurodevelopmental disorders, including schizophrenia. Combining these data with previous common variant evidence, we suggest that epigenetic dysregulation, specifically in the histone H3K4 methylation pathway, is an important mechanism in the pathogenesis of schizophrenia.


Molecular Psychiatry | 2010

Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype.

Nicholas John Craddock; Lisa Jones; Ian Richard Jones; George Kirov; Elaine K. Green; Detelina Grozeva; Valentina Moskvina; Ivan Nikolov; M L Hamshere; Damjan Vukcevic; Sian Caesar; Katherine Gordon-Smith; Christine Fraser; E. Russell; Nadine Norton; Gerome Breen; D. St Clair; D. A. Collier; Allan H. Young; I N Ferrier; Anne Farmer; Peter McGuffin; Peter Holmans; Peter Donnelly; Michael John Owen; M C O'Donovan

Despite compelling evidence for a major genetic contribution to risk of bipolar mood disorder, conclusive evidence implicating specific genes or pathophysiological systems has proved elusive. In part this is likely to be related to the unknown validity of current phenotype definitions and consequent aetiological heterogeneity of samples. In the recent Wellcome Trust Case Control Consortium genome-wide association analysis of bipolar disorder (1868 cases, 2938 controls) one of the most strongly associated polymorphisms lay within the gene encoding the GABAA receptor β1 subunit, GABRB1. Aiming to increase biological homogeneity, we sought the diagnostic subset that showed the strongest signal at this polymorphism and used this to test for independent evidence of association with other members of the GABAA receptor gene family. The index signal was significantly enriched in the 279 cases meeting Research Diagnostic Criteria for schizoaffective disorder, bipolar type (P=3.8 × 10−6). Independently, these cases showed strong evidence that variation in GABAA receptor genes influences risk for this phenotype (independent system-wide P=6.6 × 10−5) with association signals also at GABRA4, GABRB3, GABRA5 and GABRR1. Our findings have the potential to inform understanding of presentation, pathogenesis and nosology of bipolar disorders. Our method of phenotype refinement may be useful in studies of other complex psychiatric and non-psychiatric disorders.


Behavioral and Brain Functions | 2008

Dopamine-beta hydroxylase polymorphism and cocaine addiction

Camila Guindalini; Ronaldo Laranjeira; David A. Collier; Guilherme Peres Messas; Homero Vallada; Gerome Breen

Cocaine addiction involves a number of medical, psychological and social problems. Understanding the genetic aetiology of this disorder will be essential for design of effective treatments. Dopamine-beta hydroxylase (DbH) catalyzes the conversion of dopamine to norepinephrine and could, therefore, have an influence on both cocaine action and the basal sensitivity of neurotransmitter systems to cocaine. Recently, the -1021C>T polymorphism have been found to strongly correlated with individual variation in plasma DbH activity. To test the influence of this polymorphism on the susceptibility of cocaine addiction, we decided to genotype it in a sample of 689 cocaine addicts and 832 healthy individuals. Genotypic and allelic analyses did not show any evidence of association with cocaine addiction, even after correcting for the effect of population stratification and other possible confounders. Our results do not support a major role of the -1021C>T polymorphism or the gene itself in the development of cocaine addiction but further examination of other variants within this gene will be necessary to completely rule out an effect.

Collaboration


Dive into the Gerome Breen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Craig

King's College London

View shared research outputs
Top Co-Authors

Avatar

Marcella Rietschel

Martin Luther University of Halle-Wittenberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Maier

German Center for Neurodegenerative Diseases

View shared research outputs
Researchain Logo
Decentralizing Knowledge