Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerrit Timmerhaus is active.

Publication


Featured researches published by Gerrit Timmerhaus.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2011

Development and assessment of oligonucleotide microarrays for Atlantic salmon (Salmo salar L.)

Aleksei Krasnov; Gerrit Timmerhaus; Sergey Afanasyev; Sven Martin Jørgensen

The cDNA microarrays have played a major role in functional genomics of fish and contributed substantially to different areas of aquaculture research. However at present these platforms are gradually substituted with oligonucleotide microarrays (ONM), which represent the most cost-efficient, flexible, powerful and accurate tool for multiple gene expression profiling, especially in species with rich genomic resources. This paper describes the development and assessment of ONM platforms for Atlantic salmon. The process started with the establishment of a bioinformatic system, selection of a low redundancy set of nucleotide sequences providing coverage of transcriptomes of several fish species, their identification by protein products and annotations. Pilot experiments were performed to address issues that are essential for development of ONM: gene composition, quality assessment, hybridization success of homologous and heterologous probes, optimum numbers of spot replicates and processing, management and mining of gene expression data. Performance of microarrays was evaluated in two experiments with Atlantic salmon. Comparison of peripheral blood leukocytes with a mixture of other tissues was conducted for characterization of the leukocyte transcriptome. Analyses of salmon infected with different viral diseases identified virus-responsive genes that can be used as markers for diagnostics of infected status of fish. Data mining with functional annotations confirmed the relevance of these findings.


Virology Journal | 2011

IPNV with high and low virulence: host immune responses and viral mutations during infection

Astrid Skjesol; Ingrid Skjæveland; Marianne Elnæs; Gerrit Timmerhaus; Børge Nilsen Fredriksen; Sven Martin Jørgensen; Aleksei Krasnov; Jorunn B. Jørgensen

BackgroundInfectious pancreatic necrosis virus (IPNV) is an aquatic member of the Birnaviridae family that causes widespread disease in salmonids. IPNV is represented by multiple strains with markedly different virulence. Comparison of isolates reveals hyper variable regions (HVR), which are presumably associated with pathogenicity. However little is known about the rates and modes of sequence divergence and molecular mechanisms that determine virulence. Also how the host response may influence IPNV virulence is poorly described.MethodsIn this study we compared two field isolates of IPNV (NFH-Ar and NFH-El). The sequence changes, replication and mortality were assessed following experimental challenge of Atlantic salmon. Gene expression analyses with qPCR and microarray were applied to examine the immune responses in head kidney.ResultsSignificant differences in mortality were observed between the two isolates, and viral load in the pancreas at 13 days post infection (d p.i.) was more than 4 orders of magnitude greater for NFH-Ar in comparison with NFH-El. Sequence comparison of five viral genes from the IPNV isolates revealed different mutation rates and Ka/Ks ratios. A strong tendency towards non-synonymous mutations was found in the HRV of VP2 and in VP3. All mutations in VP5 produced precocious stop codons. Prior to the challenge, NFH-Ar and NFH-El possessed high and low virulence motifs in VP2, respectively. Nucleotide substitutions were noticed already during passage of viruses in CHSE-214 cells and their accumulation continued in the challenged fish. The sequence changes were notably directed towards low virulence. Co-ordinated activation of anti-viral genes with diverse functions (IFN-a1 and c, sensors - Rig-I, MDA-5, TLR8 and 9, signal transducers - Srk2, MyD88, effectors - Mx, galectin 9, galectin binding protein, antigen presentation - b2-microglobulin) was observed at 13 d p.i. (NFH-Ar) and 29 d p.i. (both isolates).ConclusionsMortality and expression levels of the immune genes were directly related to the rate of viral replication, which was in turn associated with sequences of viral genes. Rapid changes in the viral genome that dramatically reduced virus proliferation might indicate a higher susceptibility to protective mechanism employed by the host. Disease outbreak and mortality depend on a delicate balance between host defence, regulation of signalling cascades and virus genomic properties.


Molecular Immunology | 2011

Genomic survey of early responses to viruses in Atlantic salmon, Salmo salar L.

Aleksei Krasnov; Gerrit Timmerhaus; Berit Lyng Schiøtz; Jacob Torgersen; Sergey Afanasyev; Dimitar B. Iliev; Jorunn B. Jørgensen; Harald Takle; Sven Martin Jørgensen

Viral diseases are one of the main problems and risk factors in aquaculture. At present diseases are diagnosed by detection of pathogens and clinical symptoms. Identification of genes involved in early responses to viruses is important for better knowledge of antiviral defence and development of diagnostic tools. The aim of this study was to search for gene markers common for viral infections in Atlantic salmon based on microarray analyses of a wide range of samples. Gene expression profiles from fish and cell cultures infected with different viruses and treated with the synthetic double-stranded RNA poly(I:C) were compared in order to identify virus responsive genes (VRG). The list of VRG defined in this study contained 117 genes with known or unidentified functions. Several genes, including the most highly ranked one (receptor transporting protein), had not been previously reported to be involved in antiviral defence. VRG were characterized by a rapid induction and low tissue specificity, and their expression levels were related to the viral load. Immunofluorescence analyses of proteins encoded by VRG in cardiac tissue of salmon with the viral disease cardiomyopathy syndrome (CMS) revealed a common expression pattern. In head kidney leukocytes VRG showed comparable or equal responses to CpG and poly(I:C), which mimic respectively bacterial DNA and viral RNA. Most VRG showed highly correlated expression with interferon-a (IFNa). Sequence comparison of salmon VRG with those from other species gave an understanding of the evolution of these genes, which showed a remarkably rapid sequence divergence in comparison with the entire proteome. VRG emerged both before and after separation of teleosts and tetrapods, and among genes found exclusively in fish species there were members of several multigene families: tripartite motif proteins, gig1- and gig2-like proteins. Several VRG, including genes with unknown functions and orthologs to mammalian RNA helicase RIG-I and chemokine C-X-C type 10, were present in cyprinid and salmonid fish but not in the phylogenetically advanced orders, suggesting that they have been lost in the evolution of Teleostei. Apparently, a number of genes involved in antiviral responses in salmon have acquired different functional roles in higher vertebrates.


BMC Genomics | 2011

Transcriptome profiling of immune responses to cardiomyopathy syndrome (CMS) in Atlantic salmon

Gerrit Timmerhaus; Aleksei Krasnov; Pål Nilsen; Marta Alarcon; Sergey Afanasyev; Marit Rode; Harald Takle; Sven Martin Jørgensen

BackgroundCardiomyopathy syndrome (CMS) is a disease associated with severe myocarditis primarily in adult farmed Atlantic salmon (Salmo salar L.), caused by a double-stranded RNA virus named piscine myocarditis virus (PMCV) with structural similarities to the Totiviridae family. Here we present the first characterisation of host immune responses to CMS assessed by microarray transcriptome profiling.ResultsUnvaccinated farmed Atlantic salmon post-smolts were infected by intraperitoneal injection of PMCV and developed cardiac pathology consistent with CMS. From analysis of heart samples at several time points and different tissues at early and clinical stages by oligonucleotide microarrays (SIQ2.0 chip), six gene sets representing a broad range of immune responses were identified, showing significant temporal and spatial regulation. Histopathological examination of cardiac tissue showed myocardial lesions from 6 weeks post infection (wpi) that peaked at 8-9 wpi and was followed by a recovery. Viral RNA was detected in all organs from 4 wpi suggesting a broad tissue tropism. High correlation between viral load and cardiac histopathology score suggested that cytopathic effect of infection was a major determinant of the myocardial changes. Strong and systemic induction of antiviral and IFN-dependent genes from 2 wpi that levelled off during infection, was followed by a biphasic activation of pathways for B cells and MHC antigen presentation, both peaking at clinical pathology. This was preceded by a distinct cardiac activation of complement at 6 wpi, suggesting a complement-dependent activation of humoral Ab-responses. Peak of cardiac pathology and viral load coincided with cardiac-specific upregulation of T cell response genes and splenic induction of complement genes. Preceding the reduction in viral load and pathology, these responses were probably important for viral clearance and recovery.ConclusionsBy comparative analysis of gene expression, histology and viral load, the temporal and spatial regulation of immune responses were characterised and novel immune genes identified, ultimately leading to a more complete understanding of host-virus responses and pathology and protection in Atlantic salmon during CMS.


Molecular Immunology | 2013

Genomic analysis of the host response to nervous necrosis virus in Atlantic cod (Gadus morhua) brain

Aleksei Krasnov; Øyvind Kileng; Stanko Skugor; Sven Martin Jørgensen; Sergey Afanasyev; Gerrit Timmerhaus; Ann-Inger Sommer; Ingvill Jensen

Genome sequencing combined with transcriptome profiling promotes exploration of defence against pathogens and discovery of immune genes. Based on sequences from the recently released genome of Atlantic cod, a genome-wide oligonucleotide microarray (ACIQ-1) was designed and used for analyses of gene expression in the brain during infection with nervous necrosis virus (NNV). A challenge experiment with NNV was performed with Atlantic cod juveniles and brain samples from virus infected and uninfected fish were used for microarray analysis. Expression of virus induced genes increased at 5 days post challenge and persisted at stable level to the last sampling at 25 days post challenge. A large fraction of the up-regulated genes (546 features) were known or expected to have immune functions and most of these have not previously been characterized in Atlantic cod. Transcriptomic changes induced by the virus involved strong activation of genes associated with interferon and tumour necrosis factor related responses and acute inflammation. Up-regulation of genes involved in adaptive immunity suggested a rapid recruitment of B and T lymphocytes to the NNV infected brain. QPCR analyses of 15 candidate genes of innate immunity showed rapid induction by poly(I:C) in Atlantic cod larvae cells suggesting an antiviral role. Earliest and greatest expression changes after poly I:C stimulation was observed for interferon regulatory factors IRF4 and IRF7. Comparative studies between teleost species provided new knowledge about the evolution of innate antiviral immunity in fish. A number of genes is present or responds to viruses only in fish. Innate immunity of Atlantic cod is characterized by selective expansion of several medium-sized multigene families with ribose binding domains. An interesting finding was the high representation of three large gene families among the early antiviral genes, including tripartite motif proteins (TRIM) and proteins with PRY-SPRY and NACHT domains. The latter two with respectively 52 and 114 members in Atlantic cod have gone through expansions in different groups of fish. These proteins most likely have ligand binding properties and their propagation could be linked to the loss of MHC class II in the Atlantic cod genome.


Fish & Shellfish Immunology | 2015

Transcriptome analyses of Atlantic salmon (Salmo salar L.) erythrocytes infected with piscine orthoreovirus (PRV).

Maria Krudtaa Dahle; Øystein Wessel; Gerrit Timmerhaus; Ingvild Berg Nyman; Sven Martin Jørgensen; Espen Rimstad; Aleksei Krasnov

Heart and skeletal muscle inflammation (HSMI) is a widespread disease of farmed Atlantic salmon (Salmo salar L.) and is associated with piscine orthoreovirus (PRV) infection. PRV is detectable in blood long before development of pathology in cardiac- and skeletal muscle appear, and erythrocytes have been identified as important target cells for the virus. The effects of PRV infection on cellular processes of erythrocytes are not known, but haemolytic anemia or systemic lysis of erythrocytes does not seem to occur, even with high virus loads in erythrocytes. In this study, gene expression profiling performed with high-density oligonucleotide microarray showed that PRV infection of erythrocytes induced a large panel of virus responsive genes. These involved interferon-regulated antiviral genes, as well as genes involved in antigen presentation via MHC class I. PRV infection also stimulated negative immune regulators. In contrast, a large number of immune genes expressed prior to infection were down-regulated. Moderate reduction of expression was also found for many genes encoding components of cytoskeleton and myofiber, proteins involved in metabolism, ion exchange, cell-cell interactions as well as growth factors and regulators of differentiation. PRV did not affect expression of genes involved in heme biosynthesis, gas exchange or erythrocyte-specific markers, but some regulators of erythropoiesis showed decreased transcription levels. These results indicate that PRV infection activates innate antiviral immunity in salmon erythrocytes, but suppresses other gene expression programs. Gene expression profiles suggest major phenotypic changes in PRV infected erythrocytes, but the functional consequences remain to be explored.


British Journal of Nutrition | 2014

Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon ( Salmo salar L.)

Trond M. Kortner; Ingemar Björkhem; Aleksei Krasnov; Gerrit Timmerhaus; Åshild Krogdahl

Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.


Molecular Immunology | 2016

Differences in gene expression in Atlantic salmon parr and smolt after challenge with Piscine orthoreovirus (PRV).

Lill-Heidi Johansen; Maria Krudtaa Dahle; Øystein Wessel; Gerrit Timmerhaus; Marie Løvoll; Magnus Vikan Røsæg; Sven Martin Jørgensen; Espen Rimstad; Aleksei Krasnov

Heart and skeletal muscle inflammation (HSMI) are a disease of farmed Atlantic salmon (Salmo salar) associated with Piscine orthoreovirus (PRV). The disease appears mainly during the marine production phase. This study examined if smoltification and transfer to seawater could compromise immune responses to PRV. Parr and smolts of the same origin were challenged by cohabitation with intraperitoneally injected salmon. Peak levels of PRV in spleen of cohabitants were reached after 8 weeks, but at a lower level in parr compared to smolts. Thereafter the virus levels declined, but remained significantly lower in parr than in smolts. Both groups developed typical HSMI histopathological heart lesions, which were most prominent after 10 weeks. Microarray and qPCR analyses revealed slightly lower expression of immune genes in spleen and head kidney of smolts before challenge. Infected parr showed earlier induction of genes involved in innate antiviral immunity, as well as for genes related to B and T cell responses. Gene expression profiles also indicated stimulation of heme and iron metabolism and erythropoiesis in smolts, which may indicate replacement of PRV-infected erythrocytes.


Aquatic Toxicology | 2015

Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida)

Øivind Andersen; Marianne Frantzen; Marte Rosland; Gerrit Timmerhaus; Adrijana Škugor; Aleksei Krasnov

Petroleum-related activities in the Arctic have raised concerns about the adverse effects of potential oil spill on the environment and living organisms. Polar cod plays a key role in the Arctic marine ecosystem and is an important species for monitoring oil pollution in this region. We examined potential interactions of oil pollution and global warming by analysing liver transcriptome changes in polar cod exposed to crude oil at elevated temperature. Adult males and females were kept at high (11°C) or normal (4°C) temperature for 5 days before exposure to mechanically dispersed crude oil for 2 days followed by recovery in clean sea water for 11 days at the two temperatures. Genome-wide microarray analysis of liver samples revealed numerous differentially expressed genes induced by uptake of oil as confirmed by increased levels of bile polycyclic aromatic hydrocarbon (PAH) metabolites. The hepatic response included genes playing important roles in xenobiotic detoxification and closely related biochemical processes, but also of importance for protein stress response, cell repair and immunity. Though magnitude of transcriptome responses was similar at both temperatures, the upregulated expression of cyp1a1 and several chaperone genes was much stronger at 11°C. Most gene expression changes returned to basal levels after recovery. The microarray results were validated by qPCR measurement of eleven selected genes representing both known and novel biomarkers to assess exposure to anthropogenic threats on polar cod. Strong upregulation of the gene encoding fibroblast growth factor 7 is proposed to protect the liver of polar fish with aglomerular kidneys from the toxic effect of accumulated biliary compounds. The highly altered liver transcriptome patterns after acute oil exposure and recovery suggests rapid responses in polar cod to oil pollutants and the ability to cope with toxicity in relatively short time.


Frontiers in Marine Science | 2014

Association between swimming performance, cardiorespiratory morphometry, and thermal tolerance in Atlantic salmon (Salmo salar L.)

Katja Anttila; Sven Martin Jørgensen; Matthew T. Casselman; Gerrit Timmerhaus; Anthony P. Farrell; Harald Takle

This experiment tested the hypothesis that swimming performance in Atlantic salmon (Salmo salar) parr is connected to cardiorespiratory performance and morphology, as well as maximum heart rate (fHmax) related measures of thermal tolerance. Moreover, it was hypothesized that the cardiorespiratory differences between poor and strong swimmers will be retained in a later life stage, i.e., 15 weeks post-smoltification and seawater transfer. This experiment screened a population of 3,200 parr (11.2 ± 0.25 g) for their swimming performance, classifying them as poor and good swimmers based on their critical swimming speeds (4.4±0.1 body length s-1 and >6.8±0.1 body length s-1, respectively). Compared with poor performing parr, good swimmers had a significantly thicker compact myocardium (by 23.7%) and taller gill secondary lamellae (by 16.2%). In contrast, there was no significant difference in maximum oxygen consumption between the two groups as assessed using a ‘chase’ protocol, and the relationship between heart rate specific measures of thermal tolerance and swim performance was variable. For example, three measures did not differ between the two groups, whereas the Arrhenius breakpoint temperature for fHmax and fHmax were higher and lower, respectively, in the poor swimmers. Importantly, the identified morphological and fHmax differences at the parr stage persisted after 15 weeks of common garden rearing in seawater, and they were associated with an increase in relative ventricular mass and a small, but significant, improvement in growth rate. Therefore, it seems that an early assessment of swimming performance can effectively screen for morphological capacities related to oxygen supply and growth rate, but less so for heart rate related measures of thermal tolerance.

Collaboration


Dive into the Gerrit Timmerhaus's collaboration.

Top Co-Authors

Avatar

Espen Rimstad

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jacob Torgersen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Øivind Andersen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Marta Alarcon

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Ingvild Berg Nyman

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Jorunn B. Jørgensen

Norwegian College of Fishery Science

View shared research outputs
Top Co-Authors

Avatar

Magnus Vikan Røsæg

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge