Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerry Shaw is active.

Publication


Featured researches published by Gerry Shaw.


The FASEB Journal | 2002

Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells

Gerry Shaw; Silas Morse; Miguel Ararat; Frank L. Graham

The 293 cell line was derived by transformation of primary cultures of human embryonic kidney (HEK) cells with sheared adenovirus (Ad)5 DNA. A combination of immunostaining, immunoblot, and microarray analysis showed that 293 cells express the neurofilament (NF) subunits NF‐L, NF‐M, NF‐H, and α‐internexin as well as many other proteins typically found in neurons. Three other independently derived HEK lines, two transformed by Ad5 and one by Ad12, also expressed NFs, as did one human embryonic retinal cell line transformed with Ad5. Two rodent kidney lines transformed with Ad12 were also found to express NF proteins, although several rodent kidney cell lines transformed by Ad5 DNA and three HEK cell lines transformed by the SV40 early region did not express NFs. These results suggest that human Ads preferentially transform human neuronal lineage cells. We also demonstrate that the widely used HEK293 cells have an unexpected relationship to neurons, a finding that may require reinterpretation of many previous studies in which it was assumed that HEK293 cells resembled more typical kidney epithelial cells.


Journal of Neural Engineering | 2012

Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants

Abhishek Prasad; Qing-Shan Xue; Viswanath Sankar; Toshikazu Nishida; Gerry Shaw; Wolfgang J. Streit; Justin C. Sanchez

For nearly 55 years, tungsten microwires have been widely used in neurophysiological experiments in animal models to chronically record neuronal activity. While tungsten microwires initially provide stable recordings, their inability to reliably record high-quality neural signals for tens of years has limited their efficacy for neuroprosthetic applications in humans. Comprehensive understanding of the mechanisms of electrode performance and failure is necessary for developing next generation neural interfaces for humans. In this study, we evaluated the abiotic (electrophysiology, impedance, electrode morphology) and biotic (microglial reactivity, blood-brain barrier disruption, biochemical markers of axonal injury) effects of 16-channel, 50 µm diameter, polyimide insulated tungsten microwires array for implant durations that ranged from acute to up to 9 months in 25 rats. Daily electrode impedance spectroscopy, electrophysiological recordings, blood and cerebrospinal fluid (CSF) withdrawals, and histopathological analysis were performed to study the time-varying effects of chronic electrode implantation. Structural changes at the electrode recording site were observed as early as within 2-3 h of electrode insertion. Abiotic analysis indicated the first 2-3 weeks following surgery was the most dynamic period in the chronic electrode lifetime as there were greater variations in the electrode impedance, functional electrode performance, and the structural changes occurring at the electrode recording tips. Electrode recording site deterioration continued for the long-term chronic animals as insulation damage occurred and recording surface became more recessed over time. In general, electrode impedance and functional performance had smaller daily variations combined with reduced electrode recording site changes during the chronic phase. Histopathological studies were focused largely on characterizing microglial cell responses to electrode implantation. We found that activated microglia were present near the electrode tracks in all non-acute animals studied, thus indicating presence of a neuroinflammatory response regardless of post-implantation survival times and electrode performance. Conversely, dystrophic microglia detectable as fragmented cells were found almost exclusively in acute animals surviving only few hours after implantation. While there was no consistent relationship between microglial cell responses and electrode performance, we noticed co-occurrence of high ferritin expression, intraparenchymal bleeding, and microglial degeneration suggesting presence of excessive oxidative stress via Fenton chemistry. Biochemical analysis indicated that these electrodes always caused a persistent release of axonal injury biomarkers even several months after implantation suggesting persistent tissue damage. Our study suggests that mechanisms of electrode failure are multi-factorial involving both abiotic and biotic parameters. Since these failure modes occur concurrently and cannot be isolated from one another, the lack of consistent relationship between electrode performance and microglial responses in our results suggest that one or more of the abiotic factors were equally responsible for degradation in electrode performance over long periods of time.


Journal of Neurotrauma | 2008

The Phosphorylated Axonal Form of the Neurofilament Subunit NF-H (pNF-H) as a Blood Biomarker of Traumatic Brain Injury

Kevin J. Anderson; Stephen W. Scheff; Kelly M. Miller; Kelly N. Roberts; Lesley K. Gilmer; Cui Yang; Gerry Shaw

The detection of neuron-specific proteins in blood might allow quantification of the degree of neuropathology in experimental and clinical contexts. We have been studying a novel blood biomarker of axonal injury, the heavily phosphorylated axonal form of the high molecular weight neurofilament subunit NF-H (pNF-H). We hypothesized that this protein would be released from damaged and degenerating neurons following experimental traumatic brain injury (TBI) in amounts large enough to allow its detection in blood and that the levels detected would reflect the degree of injury severity. An enzyme-linked immunosorbent assay (ELISA) capture assay capable of detecting nanogram amounts of pNF-H was used to test blood of rats subjected to experimental TBI using a controlled cortical impact (CCI) device. Animals were subjected to a mild (1.0 mm), moderate (1.5 mm), or severe (2.0 mm) cortical contusion, and blood samples were taken at defined times post-injury. The assay detected the presence of pNF-H as early as 6 h post-injury; levels peaked at 24-48 h, and then slowly decreased to baseline over several days post-injury. No signal above baseline was detectable in control animals. Analysis of variance (ANOVA) showed a significant effect of lesion severity, and post hoc analysis revealed that animals given a moderate and severe contusion showed higher levels of blood pNF-H than controls. In addition, the peak levels of pNF-H detected at both 24 and 48 h post-injury correlated with the degree of injury as determined by volumetric analysis of spared cortical tissue. Relative amounts of pNF-H were also determined in different areas of the central nervous system (CNS) and were found to be highest in regions containing large-diameter axons, including spinal cord and brainstem, and lowest in the cerebral cortex and hippocampus. These findings suggest that the measurement of blood levels of pNF-H is a convenient method for assessing neuropathology following TBI.


Journal of Neurochemistry | 2011

Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS.

Jeban Ganesalingam; Jiyan An; Christopher Shaw; Gerry Shaw; David Lacomis; Robert Bowser

J. Neurochem. (2011) 117, 528–537.


Journal of Neurochemistry | 2009

Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker

Kevin B. Boylan; Cui Yang; Julia E. Crook; Karen Overstreet; Michael G. Heckman; Yong Wang; David R. Borchelt; Gerry Shaw

Levels of neurofilament subunits, potential biomarkers of motor axon breakdown, are increased in amyotrophic lateral sclerosis (ALS) patient’s CSF but data on blood are not available. We measured blood levels of the phosphorylated axonal form of neurofilament H (pNF‐H) by ELISA in transgenic rodent models of superoxide dismutase 1 (SOD1) ALS, and in 20 ALS patients and 20 similar aged controls monthly for 4 months. All symptomatic rodent ALS models showed robust levels of blood pNF‐H, while control rodents or mice transgenic for unmutated SOD1 showed no detectable blood pNF‐H. Average pNF‐H levels in the G93A SOD1 mouse progressively increased from day 74 through death (day ∼130). Median blood pNF‐H level in ALS patients was 2.8‐fold higher than controls (p < 0.001). Median ALSFRS‐R declined a median of 0.8 pt/month (p < 0.001); higher baseline pNF‐H level appeared to be associated with faster ALSFRS‐R decline over 4 months (p = 0.087). The median rate of decline in ALSFRS‐R was 1.9 pt/month in patients with baseline pNF‐H levels above the median pNF‐H value of 0.53 ng/mL; ALSFRS‐R declined at a median of 0.6 pt/month in patients below this level. The pNF‐H levels were relatively stable month to month in individual patients, raising questions regarding the molecular pathogenesis of ALS. Baseline control human pNF‐H levels were higher in men than women and increased minimally over time. These data suggest that blood pNF‐H can be used to monitor axonal degeneration in ALS model rodents and support further study of this protein as a potential biomarker of disease prognosis in ALS patients.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis

Kevin B. Boylan; Jonathan D. Glass; Julia E. Crook; Cui Yang; Colleen S. Thomas; Pamela Desaro; Amelia Johnston; Karen Overstreet; Crystal Kelly; Meraida Polak; Gerry Shaw

Background The phosphorylated neurofilament heavy subunit (pNF-H), a major structural component of motor axons, is a promising putative biomarker in amyotrophic lateral sclerosis (ALS) but has been studied mainly in CSF. We examined pNF-H concentrations in plasma, serum and CSF as a potential biomarker for disease progression and survival in ALS. Methodology We measured pNF-H concentration by monoclonal sandwich ELISA in plasma (n=43), serum and CSF (n=20) in ALS patients collected at the Mayo Clinic Florida and Emory University. We included plasma from an ALS cohort (n=20) from an earlier pilot study in order to evaluate baseline pNF-H levels in relation to disease progression using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R), survival and anatomical region of ALS onset. Results Higher pNF-H levels in plasma, serum and CSF showed evidence of association with faster decline in ALSFRS-R. There was evidence for a relationship of higher serum and plasma pNF-H levels with shorter survival, although evidence was weaker for CSF. pNF-H concentration in plasma (n=62) may be higher in patients with bulbar onset than in patients with spinal onset. Conclusions In ALS, increased pNF-H concentration in plasma, serum and CSF appears to be associated with faster disease progression. Factors affecting pNF-H levels or their detection in serum and plasma in relation to disease course may differ from those in CSF. Data raising the possibility that site of ALS onset (bulbar vs spinal) may influence pNF-H levels in peripheral blood seems noteworthy but requires confirmation. These data support further study of pNF-H in CSF, serum and plasma as a potential ALS biomarker.


Journal of Neurotrauma | 2011

Elevated Serum Ubiquitin Carboxy-Terminal Hydrolase L1 Is Associated with Abnormal Blood–Brain Barrier Function after Traumatic Brain Injury

Brian J. Blyth; Arash Farahvar; Hua He; Akshata Nayak; Cui Yang; Gerry Shaw; Jeffrey J. Bazarian

Serum S100B elevations accurately reflect blood-brain barrier (BBB) damage. Because S100B is also present in peripheral tissues, release of this protein may not be specific to central nervous system (CNS) injury. Ubiquitin C-terminal hydrolase 1 (UCHL1), and phosphorylated neurofilament heavy chain (pNF-H) are found exclusively in neurons, but their relationship to BBB dysfunction has not been determined. The objective of this study was to determine the accuracy of serum UCHL1 and pNF-H as measures of BBB integrity after traumatic brain injury (TBI), to and compare them to S100B. We performed a prospective study of 16 patients with moderate to severe TBI (Glasgow Coma Scale [GCS] score ≤12) and 6 patients with non-traumatic headache who had cerebrospinal fluid (CSF) collected by ventriculostomy or lumbar puncture (LP). Serum and CSF were collected at the time of LP for headache patients and at 12, 24, and 48 h after injury for TBI patients. BBB function was determined by calculating albumin quotients (Q(A)), where Q(A)=[albumin(CSF)]/[albumin(serum)]. S100B, UCHL1, and pNF-H were measured by enzyme-linked immunosorbent assay (ELISA). Pearsons correlation coefficient and area under the receiver operator characteristic (ROC) curve were used to determine relationships between serum markers and Q(A). At 12 hours after TBI, a significant relationship was found between Q(A) and serum UCHL1 concentrations (AUC=0.76; 95% CI 0.55,1.00), and between Q(A) and serum S100B concentrations (AUC=0.794; 95% CI 0.57,1.02). There was no significant relationship found between these markers and Q(A) at other time points, or between pNF-H and Q(A) at any time point. We conclude that serum concentrations of UCHL1 are associated with abnormal BBB status 12 h after moderate to severe TBI. This relationship is similar to that observed between serum S100B and Q(A,) despite the fact that S100B may be released from peripheral tissues after multi-trauma. We conclude that peripheral release of S100B after multi-trauma is probably negligible and that UCHL1 may have some utility to monitor BBB disruption following TBI.


Journal of Cerebral Blood Flow and Metabolism | 2008

Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients.

Stephen B. Lewis; Regina A. Wolper; Lynn Miralia; Cui Yang; Gerry Shaw

Blood and cerebrospinal fluid (CSF) of 30 Fisher grade 3 aneurysmal subarachnoid hemorrhage (ASAH) patients were analyzed for the presence of the phosphorylated axonal form of the major neurofilament subunit NF-H (pNF-H), a promising biomarker of axonal injury. Patient demographic data including development of vasospasm and outcome scores at 6 months after aneurysmal rupture (AR) were evaluated. Higher pNF-H blood levels in the first few days after AR were strongly predictive of a negative outcome. Blood pNF-H levels in most recovering patients showed a steady increase into the second week after AR, presumably reflecting axonal degeneration secondary to the original insult. Almost half of the patients studied showed sudden dramatic peaks of pNF-H protein release into CSF in the 3- to 14-day time period after AR, which must reflect profound, coordinated, and secondary loss of axons. Patients in whom vasospasm was detected had significantly more pNF-H in both blood and CSF compared with those in whom vasospasm was not detected. We conclude that the analysis of pNF-H levels in blood and CSF differentiates between patients with poor and favorable outcomes and also reveals several novel features of ASAH progression and recovery.


The Journal of Neuroscience | 2014

Brain Injection of α-Synuclein Induces Multiple Proteinopathies, Gliosis, and a Neuronal Injury Marker

Amanda N. Sacino; Mieu Brooks; Alex B. McKinney; Michael A. Thomas; Gerry Shaw; Todd E. Golde; Benoit I. Giasson

Intracerebral injection of amyloidogenic α-synuclein (αS) has been shown to induce αS pathology in the CNS of nontransgenic mice and αS transgenic mice, albeit with varying efficiencies. In this study, using wild-type human αS transgenic mice (line M20), we demonstrate that intracerebral injection of recombinant amyloidogenic or soluble αS induces extensive αS intracellular inclusion pathology that is associated with robust gliosis. Near the injection site, a significant portion of αS inclusions are detected in neurons but also in astrocytes and microglia. Aberrant induction of expression of the intermediate filament protein peripherin, which is associated with CNS neuronal injury, was also observed predominantly near the site of injection. In addition, many pSer129 αS-induced inclusions colocalize with the low-molecular-mass neurofilament subunit (NFL) or peripherin staining. αS inclusion pathology was also induced in brain regions distal from the injection site, predominantly in neurons. Unexpectedly, we also find prominent p62-immunoreactive, αS-, NFL-, and peripherin-negative inclusions. These findings provide evidence that exogenous αS challenge induces αS pathology but also results in the following: (1) a broader disruption of proteostasis; (2) glial activation; and (3) a marker of a neuronal injury response. Such data suggest that induction of αS pathology after exogenous seeding may involve multiple interdependent mechanisms.


Journal of Neuroscience Research | 2010

Identification and preliminary characterization of ubiquitin C terminal hydrolase 1 (UCHL1) as a biomarker of neuronal loss in aneurysmal subarachnoid hemorrhage

Stephen B. Lewis; Regina A. Wolper; Yueh-Yun Chi; Lynn Miralia; Yong Wang; Cui Yang; Gerry Shaw

By using two different approaches, ubiquitin C‐terminal hydrolase 1 (UCHL1) was identified as a potential cerebrospinal fluid (CSF) biomarker of neuronal loss in aneurysmal subarachnoid hemorrhage (ASAH) and presumably other CNS damage and disease states. Appropriate antibodies and a sensitive ELISA were generated, and the release of UCHL1 into CSF was compared with that of pNF‐H and S100β in a cohort of 30 ASAH patients. Both UCHL1 and pNF‐H showed persistent release into CSF in almost all patients in the second week postaneurysmal rupture (AR), and S100β levels rapidly declined to baseline levels in 23 of 30 patients. Seven of thirty patients showed persistently elevated S100β levels over the first 5 days post‐AR and also had relatively higher levels of pNF‐H and UCHL1 higher compared with the rest. These patients proved to have very poor outcomes, with 6 of 7 expiring. Patients who did reduce S100β levels tended to have a better outcome if pNF‐H and UCHL1 levels were also lower, and elevated UCHL1 levels in the second week post‐AR were particularly predictive of poor outcome. Acute coordinated releases of large amounts of UCHL1, pNF‐H, and S100β in 16 of 30 patients were observed, suggesting sudden loss of brain tissues associated with secondary events. We conclude that measurement of the CSF levels of these proteins reveals details of ASAH progression and recovery and predicts patient outcome.

Collaboration


Dive into the Gerry Shaw's collaboration.

Top Co-Authors

Avatar

Cui Yang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Guy

Bascom Palmer Eye Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge