Gerry Stephen Oxford
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerry Stephen Oxford.
Nature Medicine | 2011
Joel M. Brittain; Djane B. Duarte; Sarah M. Wilson; Weiguo Zhu; Carrie J. Ballard; Philip L. Johnson; Naikui Liu; Wenhui Xiong; Matthew S. Ripsch; Yuying Wang; Jill C. Fehrenbacher; Stephanie D. Fitz; May Khanna; Chul Kyu Park; Brian S. Schmutzler; Bo M. Cheon; Michael R. Due; Tatiana Brustovetsky; Nicole M. Ashpole; Andy Hudmon; Samy O. Meroueh; Cynthia M. Hingtgen; Nickolay Brustovetsky; Ru-Rong Ji; Joyce H. Hurley; Xiaoming Jin; Anantha Shekhar; Xiao Ming Xu; Gerry Stephen Oxford; Michael R. Vasko
The use of N-type voltage-gated calcium channel (CaV2.2) blockers to treat pain is limited by many physiological side effects. Here we report that inflammatory and neuropathic hypersensitivity can be suppressed by inhibiting the binding of collapsin response mediator protein 2 (CRMP-2) to CaV2.2 and thereby reducing channel function. A peptide of CRMP-2 fused to the HIV transactivator of transcription (TAT) protein (TAT-CBD3) decreased neuropeptide release from sensory neurons and excitatory synaptic transmission in dorsal horn neurons, reduced meningeal blood flow, reduced nocifensive behavior induced by formalin injection or corneal capsaicin application and reversed neuropathic hypersensitivity produced by an antiretroviral drug. TAT-CBD3 was mildly anxiolytic without affecting memory retrieval, sensorimotor function or depression. At doses tenfold higher than that required to reduce hypersensitivity in vivo, TAT-CBD3 caused a transient episode of tail kinking and body contortion. By preventing CRMP-2–mediated enhancement of CaV2.2 function, TAT-CBD3 alleviated inflammatory and neuropathic hypersensitivity, an approach that may prove useful in managing chronic pain.
Molecular and Cellular Neuroscience | 2007
Weiguo Zhu; Gerry Stephen Oxford
Nerve growth factor (NGF) induces an acute sensitization of nociceptive DRG neurons, in part, through sensitization of the capsaicin receptor TRPV1 via the high affinity trkA receptor. The mechanisms linking trkA and TRPV1 remain controversial with several candidate signaling pathways proposed. Utilizing adult rat and mouse DRG neurons and CHO cells co-expressing trkA and TRPV1, we have investigated the signaling events underlying acute TRPV1 sensitization by NGF combining biochemical, electrophysiological, pharmacological, mutational and genetic knockout approaches. Pharmacological interference with p42/p44 mitogen activated protein kinase (MAPK) or phosphoinositide-3-kinase (PI3K), but not PLC abrogated sensitization of capsaicin responses. Co-expression of TRPV1 with wild-type or Y785F (PLC signal deficient) mutant human trkA reconstituted NGF sensitization. In contrast, TRPV1 co-expressed with MAPK signaling deficient Y490A or PI3K signaling deficient Y751F trkA mutants exhibited weaker sensitization. Biochemical analysis of p42/p44 and Akt phosphorylation confirmed the specificity of pharmacological agents and trkA mutants. Finally, NGF sensitization of capsaicin responses was greatly reduced in neurons from p85alpha (regulatory subunit of PI3K) null mice. These data strongly suggest that PI3K and MAPK pathways, but not the PLC pathway underlie the acute sensitization of TRPV1 by NGF.
Pain | 2011
Phillip E. Kunkler; Carrie J. Ballard; Gerry Stephen Oxford; Joyce H. Hurley
&NA; The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors is the mechanistic link between environmental irritants and peptide‐mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC‐030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP8–37, or intranasal or dural administration of HC‐030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants.
Neuropsychopharmacology | 2013
Andrei I. Molosh; Tammy J. Sajdyk; William A. Truitt; Weiguo Zhu; Gerry Stephen Oxford; Anantha Shekhar
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu31,Pro34]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Neuroscience Letters | 2011
Weiguo Zhu; Gerry Stephen Oxford
Cultures of neonatal and adult dorsal root ganglion (DRG) neurons are commonly used in in vitro models to study the ion channels and signaling events associated with peripheral sensation under various conditions. Differential responsiveness between neonatal and adult DRG neurons to physiological or pathological stimuli suggests potential differences in their gene expression profiles. We performed a microarray analysis of cultured adult and neonatal rat DRG neurons, which revealed distinct gene expression profiles especially of ion channels and signaling molecules at the genomic level. For example, Ca(2+)-stimulated adenylyl cyclase (AC) isoforms AC3 and AC8, PKCδ and CaMKIIα, the voltage-gated sodium channel β1 and β4, and potassium channels K(v)1.1, K(v)3.2, K(v)4.1, K(v)9.1, K(v)9.3, K(ir)3.4, K(ir)7.1, K(2P)1.1/TWIK-1 had significantly higher mRNA expression in adult rat DRG neurons, while Ca(2+)-inhibited AC5 and AC6, sodium channel Na(v)1.3 α subunit, potassium channels K(ir)6.1, K(2P)10.1/TREK-2, calcium channel Ca(v)2.2 α1 subunit, and its auxiliary subunits β1 and β3 were conversely down regulated in adult neurons. Importantly, higher adult neuron expression of ERK1/2, PI3K/P110α, but not of TRPV1 and TrkA, was found and confirmed by PCR and western blot. These latter findings are consistent with the key role of ERK and PI3K signaling in sensitization of TRPV1 by NGF and may explain our previously published observation that adult, but not neonatal, rat DRG neurons are sensitized by NGF.
Cephalalgia | 2015
Phillip E. Kunkler; LuJuan Zhang; Jessica J. Pellman; Gerry Stephen Oxford; Joyce H. Hurley
Background Air pollution is linked to increased emergency room visits for headache, and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that nasal administration of environmental irritants acutely increases meningeal blood flow via a TRPA1-dependent mechanism involving the trigeminovascular system. Here, we examine whether chronic environmental irritant exposure sensitizes the trigeminovascular system. Methods Male rats were exposed to acrolein, a TRPA1 agonist, or room air by inhalation for four days prior to meningeal blood flow measurements. Some animals were injected daily with a TRPA1 antagonist, AP-18, or vehicle prior to inhalation exposure. Trigeminal ganglia were isolated following blood flow measurements for immunocytochemistry and/or qPCR determination of TRPV1, TRPA1 and CGRP levels. Results Acrolein inhalation exposure potentiated blood flow responses both to TRPA1 and TRPV1 agonists compared to room air. Acrolein exposure did not alter TRPV1 or TRPA1 mRNA levels or TRPV1 or CGRP immunoreactive cell counts in the trigeminal ganglion. Acrolein sensitization of trigeminovascular responses to a TRPA1 agonist was attenuated by pre-treatment with AP-18. Interpretation These results suggest trigeminovascular sensitization as a mechanism for enhanced headache susceptibility after chemical exposure.
The Open Pain Journal | 2013
Gerry Stephen Oxford; Joyce H. Hurley
TRP channels are members of a large family of non-selective cation channels. The family which numbers over 30 is classified into 6 groups based on amino acid sequence homology. TRP channels are distributed in many peripheral tissues as well as central and peripheral nervous system. These channels are important in sensing a wide range of chemical and physical stimuli. Several TRP channels, including TRPV1 and TRPA1 are important in pain transduction pathways. This review will focus on the function of TRP channels in the trigeminovascular system and other anatomical regions which are relevant to migraine. We will discuss the possible role of TRP channels in migraine, including the potential role of TRPV1 in the hypersensitivity and allodynia frequently observed in migraine patients. We will review the status of TRP channel drugs in migraine therapeutics. We will also discuss the possible roles of TRP channels in triggering migraine attacks, a process which is not well-understood. Kewords: Migraine, trigeminal, TRP receptor, pain, neurogenic, inflammation.
PLOS ONE | 2014
Phillip E. Kunkler; Carrie J. Ballard; Jessica J. Pellman; LuJuan Zhang; Gerry Stephen Oxford; Joyce H. Hurley
Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.
Neurobiology of Pain | 2017
Emma Leishman; Phillip E. Kunkler; Meera Manchanda; Kishan Sangani; Jordyn Stuart; Gerry Stephen Oxford; Joyce H. Hurley; Heather B. Bradshaw
Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1), a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1) agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization.
Pain | 2017
Phillip E. Kunkler; LuJuan Zhang; Philip L. Johnson; Gerry Stephen Oxford; Joyce H. Hurley
Abstract Air pollution is linked to increased emergency department visits for headache and migraine patients frequently cite chemicals or odors as headache triggers, but the association between air pollutants and headache is not well understood. We previously reported that chronic environmental irritant exposure sensitizes the trigeminovascular system response to nasal administration of environmental irritants. Here, we examine whether chronic environmental irritant exposure induces migraine behavioral phenotypes. Male rats were exposed to acrolein, a transient receptor potential channel ankyrin-1 (TRPA1) agonist, or room air by inhalation for 4 days before meningeal blood flow measurements, periorbital cutaneous sensory testing, or other behavioral testing. Touch-induced c-Fos expression in trigeminal nucleus caudalis was compared in animals exposed to room air or acrolein. Spontaneous behavior and olfactory discrimination was examined in open-field testing. Acrolein inhalation exposure produced long-lasting potentiation of blood flow responses to a subsequent TRPA1 agonist and sensitized cutaneous responses to mechanical stimulation. C-Fos expression in response to touch was increased in trigeminal nucleus caudalis in animals exposed to acrolein compared with room air. Spontaneous activity in an open-field and scent preference behavior was different in acrolein-exposed compared with room air–exposed animals. Sumatriptan, an acute migraine treatment blocked acute blood flow changes in response to TRPA1 or transient receptor potential vanilloid receptor-1 agonists. Pretreatment with valproic acid, a prophylactic migraine treatment, attenuated the enhanced blood flow responses observed after acrolein inhalation exposures. Environmental irritant exposure yields an animal model of chronic migraine in which to study mechanisms for enhanced headache susceptibility after chemical exposure.