Gerson J. Rodrigues
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gerson J. Rodrigues.
Free Radical Biology and Medicine | 2009
Michele M. Castro; Elen Rizzi; Gerson J. Rodrigues; Carla S. Ceron; Lusiane M. Bendhack; Raquel F. Gerlach; Jose E. Tanus-Santos
Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could attenuate the increases in MMP-2 expression/activity and the vascular dysfunction and remodeling associated with 2K-1C hypertension. Sham-operated or 2K-1C hypertensive rats were treated with tempol 18 mg/kg/day or apocyanin 25 mg/kg/day (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and -independent relaxation. Quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin sections. Aortic and systemic ROS levels were measured using dihydroethidine and thiobarbituric acid-reactive substances, respectively. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry, and immunohistochemistry. Tempol and apocyanin attenuated 2K-1C hypertension (181+/-20.8 and 192+/-17.6 mm Hg, respectively, versus 213+/-18 mm Hg in hypertensive controls; both p<0.05) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Tempol, but not apocyanin (p>0.05), prevented the vascular remodeling found in 2K-1C rats (all p<0.01). Tempol was more effective than apocyanin in attenuating hypertension-induced increases in oxidative stress (both p<0.05), MMP-2 levels, and MMP-2 activity in hypertensive rats (all p<0.05). Our results suggest that antioxidant approaches decrease MMP-2 upregulation and attenuate the vascular dysfunction and remodeling during 2K-1C hypertension.
Nitric Oxide | 2008
Daniella Bonaventura; Claure N. Lunardi; Gerson J. Rodrigues; Mário A. Neto; Lusiane M. Bendhack
Sodium nitroprusside (SNP) is an endothelium-independent relaxant agent and its effect is attributed to its direct action on the vascular smooth muscle (VSM). Endothelium modulates the vascular tone through the release of vasoactive agents, such as NO. The aim of this study was to investigate the contribution of the endothelium on SNP vasorelaxation, NO release and Ca2+ mobilization. Vascular reactivity experiments showed that endothelium potentiates the SNP-relaxation in rat aortic rings and this effect was abolished by l-NAME. SNP-relaxation in intact endothelium aorta was inhibited by NOS inhibitors for the constitutive isoforms (cNOS). Furthermore, endogenous NO is involved on the SNP-effect and this endogenous NO is released by cNOS. Moreover, Ca2+ mobilization study shows that l-NAME inhibited the reduction of Ca2+-concentration in VSM cells and reduced the increase in Ca2+-concentration in endothelial cells induced by SNP. This enhancement in Ca2+-concentration in the endothelial cells is due to a voltage-dependent Ca2+ channels activation. The present findings indicate that the relaxation and [Ca2+]i decrease induced by SNP in VSM cells is potentiated by endothelial production of NO by cNOS-activation in rat aorta.
Nitric Oxide | 2012
Michele M. Castro; Elen Rizzi; Carla S. Ceron; Danielle A. Guimaraes; Gerson J. Rodrigues; Lusiane M. Bendhack; Raquel F. Gerlach; Jose E. Tanus-Santos
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 ± 17.3 versus 209 ± 10.9mm Hg in hypertensive controls, p<0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p<0.05). Doxycycline also decreased hypertension-induced oxidative stress (p<0.05), higher MMP activity (p<0.01) and improved NO levels in aortic endothelial cells (p<0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity.
Journal of Pharmacology and Experimental Therapeutics | 2007
Gerson J. Rodrigues; C. B. Restini; Claure N. Lunardi; J. E. Moreira; R. G. Lima; R.S. da Silva; Lusiane M. Bendhack
Relaxation induced by nitric oxide (NO) donors is impaired in renal hypertensive two kidney-one clip (2K-1C) rat aortas. It has been proposed that caveolae are important in signal transduction and Ca2+ homeostasis. Therefore, in the present study we investigate the integrity of caveolae in vascular smooth muscle cells (VSMCs), as well as their influence on the effects produced by NO released from both the new NO donor [Ru(NH.NHq) (terpy)NO+]3+ (TERPY) and sodium nitroprusside (SNP) on 2K-1C rat aorta. The potency of both TERPY and SNP was lower in the 2K-1C aorta that in the normotensive aorta [two kidney (2K)], whereas the maximal relaxant effect (ME) was similar in both 2K-1C and 2K aortas. In the 2K aorta, methyl-β-cyclodextrin (CD) reduced both the potency of TERPY and SNP, and their ME compared with the control, but it had no effect on the potency and ME of these NO donors in 2K-1C aortas. The decrease in cytosolic Ca2+ concentration ([Ca2+]c) induced by TERPY was larger in 2K than in 2K-1C cells, and this effect was inhibited by CD in 2K cells only. Aortic VSMCs from 2K rats presented a larger number of caveolae than those from 2K-1C rats. Treatment with CD reduced the number of caveolae in both 2K and 2K-1C aortic VSMCs. Our results support the idea that caveolae play a critical role in the relaxant effect and in the decrease in [Ca2+]c induced by NO, and they could be responsible for impaired aorta relaxation by NO in renal hypertensive rats.
Brazilian Journal of Medical and Biological Research | 2011
Amanda de Carvalho Pereira; Michele Paulo; Alice V. Araújo; Gerson J. Rodrigues; Lusiane M. Bendhack
During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca(2+) signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.
Journal of Inorganic Biochemistry | 2009
Daniella Bonaventura; Claure N. Lunardi; Gerson J. Rodrigues; Mário A. Neto; Juliana A. Vercesi; Renata Galvão de Lima; Roberto Santana da Silva; Lusiane M. Bendhack
Nitrosyl ruthenium complexes have been characterized as nitric oxide (NO) donors that induce relaxation in the denuded rat aorta. There are some differences in their vascular relaxation mechanisms compared with sodium nitroprusside. This study investigates whether the endothelium could interfere with the [Ru(terpy)(bdq)NO](3+)-TERPY-induced vascular relaxation, by analyzing the maximal relaxation (Emax) and potency (pD(2)) of TERPY. Vascular reactivity experiments showed that the endothelium negatively modulates (pD(2): 6.17+/-0.07) the TERPY relaxation in intact rat aortic rings compared with the denuded rat aorta (pD(2): 6.65+/-0.07). This effect is abolished by a non-selective NO-synthase (NOS) inhibitor L-NAME (pD(2): 6.46+/-0.10), by the superoxide anion (O(2)(-)) scavenger TIRON (pD(2): 6.49+/-0.08), and by an NOS cofactor BH(4) (pD(2): 6.80+/-0.10). The selective dye for O(2)(-) (DHE) shows that TERPY enhances O(2)(-) concentration in isolated endothelial cells (intensity of fluorescence (IF):11258.00+/-317.75) compared with the basal concentration (IF: 7760.67+/-381.50), and this enhancement is blocked by L-NAME (IF: 8892.33+/-1074.41). Similar results were observed in vascular smooth muscle cells (concentration of superoxide after TERPY: 2.63+/-0.17% and after TERPY+L-NAME: -4.63+/-0.14%). Considering that TERPY could induce uncoupling NOS, thus producing O(2)(-), we have also investigated the involvement of prostanoids in the negative modulation of the endothelium. The non-selective cyclooxygenase (COX) inhibitor indomethacin and the selective tromboxane (TXA(2)) receptor antagonist SQ29548 reduce the effect of the endothelium on TERPY relaxation (pD(2) INDO: 6.80+/-0.17 and SQ29548: 6.85+/-0.15, respectively). However, a selective prostaglandin F(2alpha) receptor antagonist (AH6809) does not change the endothelium effect. Moreover, TERPY enhances the concentration of TXA(2) stable metabolite (TXB(2)), but this effect is blocked by L-NAME and TIRON. The present findings indicate that TERPY induces uncoupling of eNOS, enhancing O(2)(-) concentration. This enhancement in O(2)(-) concentration induces COX activation, producing TXA(2), which negatively modulates the rat aorta relaxation induced by the NO donor TERPY.
Journal of Cardiovascular Pharmacology | 2012
Gerson J. Rodrigues; Amanda C. Pereira; Juliana A. Vercesi; Renata Galvão de Lima; Roberto Santana da Silva; Lusiane M. Bendhack
Abstract: In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO+]3+ (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 &mgr;g/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 &mgr;g/kg was >35 &mgr;g/kg. The injection of the nonselective NO-synthase inhibitor N&ohgr;-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.
Vascular Pharmacology | 2009
Ana Paula Sendão Oliveira; Claure N. Lunardi; Gerson J. Rodrigues; Lusiane M. Bendhack
Vascular endothelium generates nitric oxide (NO) in large vessels and induces relaxation of vascular smooth muscle cells (VSMC). The aim of this study was to evaluate the contribution of NO produced in the endothelial cells (EC) to the relaxation induced by the Ca2+ ionophore A23187 and whether this relaxation is impaired in renal hypertensive (2K-1C) rat arteries. Concentration-effect curves for A23187 were constructed in intact endothelium isolated carotid rings from 2K-1C and normotensive (2K) in the absence or in the presence of the extracellular NO scavenger haemoglobin or inhibitors of NO-synthase (NOS, L-NOARG), guanylyl-cyclase (GC, ODQ). In carotid rings loaded with Fluo-3AM, both EC and VSMC were simultaneously imaged by a confocal microscope and [Ca2+]c was derived from fluorescence intensities (IF). The maximal relaxation (ME) induced by A23187 was lower in 2K-1C than in 2K arteries. A23187-induced relaxation was abolished by haemoglobin and L-NOARG in both groups. ODQ reduced the ME to A23187 in 2K and abolished its relaxation in 2K-1C. A23187 increased [Ca2+]c in a similar way in 2K and 2K-1C EC, and decreased [Ca2+]c in VSMC, which effect was higher in 2K than in 2K-1C arteries. L-NOARG inhibited the effect of A23187 in VSMC from 2K and abolished it in 2K-1C rats. On the other hand, L-NOARG did not modify the effect of A23187 in EC from 2K and 2K-1C rats. The basal content of cGMP was higher in 2K than in 2K-1C arterial rings that was similarly increased by A23187. In conclusion, the Ca2+ ionophore A23187 increases Ca2+, activates NOS and NO production in the EC activating GC in VSMC and [Ca2+]c decrease. All these effects are higher in 2K, which contribute to the impaired relaxation to A23187 in 2K-1C rat arteries.
European Journal of Pharmacology | 2009
Ulisses V. Hipólito; Gerson J. Rodrigues; Claure N. Lunardi; Daniella Bonaventura; Sérgio Ricardo Ambrósio; Ana M. de Oliveira; Lusiane M. Bendhack; Fernando B. Da Costa; Carlos R. Tirapelli
Pimarane-type diterpenes were described to exert antispasmodic and relaxant activities. Based on this observation we hypothesized that the diterpene ent-8(14),15-pimaradien-3beta-ol (PA-3beta-ol) induced vascular relaxation. With this purpose, the present work investigates the mechanisms involved in the vasorelaxant effect of the pimarane-type diterpene PA-3beta-ol. Vascular reactivity experiments, using standard muscle bath procedures, were performed in isolated aortic rings from male Wistar rats. Cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3AM. PA-3beta-ol (10, 50 and 100 micromol/l) inhibited phenylephrine and KCl-induced contraction in either endothelium-intact or denuded rat aortic rings. PA-3beta-ol also reduced CaCl(2)-induced contraction in Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 micromol/l). PA-3beta-ol (1-300 micromol/l) concentration dependently relaxed phenylephrine-pre-contracted rings with intact or denuded endothelium. The diterpene also relaxed KCl-pre-contracted rings with intact or denuded endothelium. Moreover, Ca(2+) mobilization study showed that PA-3beta-ol (100 micromol/l) and verapamil (1 micromol/l) inhibited the increase in Ca(2+)-concentration in smooth muscle and endothelial cells induced by phenylephrine (10 micromol/l) or KCl (60 mmol/l). Pre-incubation of intact or denuded aortic rings with N(G)-nitro-l-arginine methyl ester (L-NAME, 100 micromol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 micromol/l) produced a rightward displacement of the PA-3beta-ol concentration-response curves. On the other hand, 7-nitroindazole (100 micromol/l), 1400 W (1 micromol/l), indomethacin (10 micromol/l) and tetraethylammonium (1 mmol/l) did not affect PA-3beta-ol-induced relaxation. Collectively, our results provide evidence that the effects elicited by PA-3beta-ol involve extracellular Ca(2+) influx blockade. Its effects are also partly mediated by the activation of NO-cGMP pathway.
European Journal of Pharmaceutical Sciences | 2012
Michele Paulo; Gerson J. Rodrigues; Roberto Santana da Silva; Lusiane M. Bendhack
Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells.