Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerson Shigeru Kobayashi is active.

Publication


Featured researches published by Gerson Shigeru Kobayashi.


Tissue Engineering Part A | 2009

New Source of Muscle-Derived Stem Cells with Potential for Alveolar Bone Reconstruction in Cleft Lip and/or Palate Patients

Daniela F. Bueno; Irina Kerkis; André de Mendonça Costa; Marília Trierveiler Martins; Gerson Shigeru Kobayashi; Eder Zucconi; Roberto Dalto Fanganiello; Felipe T. Salles; Ana Beatriz Almeida; Cássio Eduardo Raposo do Amaral; Nivaldo Alonso; Maria Rita Passos-Bueno

Cleft lip and palate (CLP), one of the most frequent congenital malformations, affects the alveolar bone in the great majority of the cases, and the reconstruction of this defect still represents a challenge in the rehabilitation of these patients. One of the current most promising strategy to achieve this goal is the use of bone marrow stem cells (BMSC); however, isolation of BMSC or iliac bone, which is still the mostly used graft in the surgical repair of these patients, confers site morbidity to the donor. Therefore, in order to identify a new alternative source of stem cells with osteogenic potential without conferring morbidity to the donor, we have used orbicular oris muscle (OOM) fragments, which are regularly discarded during surgery repair (cheiloplasty) of CLP patients. We obtained cells from OOM fragments of four unrelated CLP patients (CLPMDSC) using previously described preplating technique. These cells, through flow cytometry analysis, were mainly positively marked for five mesenchymal stem cell antigens (CD29, CD90, CD105, SH3, and SH4), while negative for hematopoietic cell markers, CD14, CD34, CD45, and CD117, and for endothelial cell marker, CD31. After induction under appropriate cell culture conditions, these cells were capable to undergo chondrogenic, adipogenic, osteogenic, and skeletal muscle cell differentiation, as evidenced by immunohistochemistry. We also demonstrated that these cells together with a collagen membrane lead to bone tissue reconstruction in a critical-size cranial defects previously induced in nonimmunocompromised rats. The presence of human DNA in the new bone was confirmed by PCR with human-specific primers and immunohistochemistry with human nuclei antibodies. In conclusion, we showed that cells from OOM have phenotypic and behavior characteristics similar to other adult stem cells, both in vitro and in vivo. Our findings suggest that these cells represent a promising source of stem cells for alveolar bone grafting treatment, particularly in young CLP patients.


Stem Cell Reviews and Reports | 2011

Human Stem Cell Cultures from Cleft Lip/Palate Patients Show Enrichment of Transcripts Involved in Extracellular Matrix Modeling By Comparison to Controls

Daniela F. Bueno; Gerson Shigeru Kobayashi; Meire Aguena; Cassio Eduardo Raposo-Amaral; Cibele Masotti; Lucas A. Cruz; Peter L. Pearson; Maria Rita Passos-Bueno

Nonsyndromic cleft lip and palate (NSCL/P) is a complex disease resulting from failure of fusion of facial primordia, a complex developmental process that includes the epithelial-mesenchymal transition (EMT). Detection of differential gene transcription between NSCL/P patients and control individuals offers an interesting alternative for investigating pathways involved in disease manifestation. Here we compared the transcriptome of 6 dental pulp stem cell (DPSC) cultures from NSCL/P patients and 6 controls. Eighty-seven differentially expressed genes (DEGs) were identified. The most significant putative gene network comprised 13 out of 87 DEGs of which 8 encode extracellular proteins: ACAN, COL4A1, COL4A2, GDF15, IGF2, MMP1, MMP3 and PDGFa. Through clustering analyses we also observed that MMP3, ACAN, COL4A1 and COL4A2 exhibit co-regulated expression. Interestingly, it is known that MMP3 cleavages a wide range of extracellular proteins, including the collagens IV, V, IX, X, proteoglycans, fibronectin and laminin. It is also capable of activating other MMPs. Moreover, MMP3 had previously been associated with NSCL/P. The same general pattern was observed in a further sample, confirming involvement of synchronized gene expression patterns which differed between NSCL/P patients and controls. These results show the robustness of our methodology for the detection of differentially expressed genes using the RankProd method. In conclusion, DPSCs from NSCL/P patients exhibit gene expression signatures involving genes associated with mechanisms of extracellular matrix modeling and palate EMT processes which differ from those observed in controls. This comparative approach should lead to a more rapid identification of gene networks predisposing to this complex malformation syndrome than conventional gene mapping technologies.


PLOS ONE | 2013

Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate

Gerson Shigeru Kobayashi; Lucas Alvizi; Philippa Francis-West; Anna Kuta; Bruno Vinícius Pimenta Almada; Simone Gomes Ferreira; Leonardo C. Andrade-Lima; Daniela F. Bueno; Cassio Eduardo Raposo-Amaral; Carlos Frederico Martins Menck; Maria Rita Passos-Bueno

Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88×10−2–5.02×10−9). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show for the first time that cellular defences against DNA damage may take part in determining the susceptibility to NSCL/P. These results are in accordance with the hypothesis of aetiological overlap between this malformation and cancer, and suggest a new pathogenic mechanism for the disease.


Human Mutation | 2015

Rare Variants in the Epithelial Cadherin Gene Underlying the Genetic Etiology of Nonsyndromic Cleft Lip with or without Cleft Palate

Luciano Abreu Brito; Guilherme Lopes Yamamoto; Soraia Melo; Carolina Malcher; Simone Gomes Ferreira; Joana Figueiredo; Lucas Alvizi; Gerson Shigeru Kobayashi; Michel Satya Naslavsky; Nivaldo Alonso; Temis Maria Felix; Mayana Zatz; Raquel Seruca; Maria Rita Passos-Bueno

Nonsyndromic orofacial cleft (NSOFC) is a complex disease of still unclear genetic etiology. To investigate the contribution of rare epithelial cadherin (CDH1) gene variants to NSOFC, we target sequenced 221 probands. Candidate variants were evaluated via in vitro, in silico, or segregation analyses. Three probably pathogenic variants (c.760G>A [p.Asp254Asn], c.1023T>G [p.Tyr341*], and c.2351G>A [p.Arg784His]) segregated according to autosomal dominant inheritance in four nonsyndromic cleft lip with or without cleft palate (NSCL/P) families (Lod score: 5.8 at θ = 0; 47% penetrance). A fourth possibly pathogenic variant (c.387+5G>A) was also found, but further functional analyses are needed (overall prevalence of CDH1 candidate variants: 2%; 15.4% among familial cases). CDH1 mutational burden was higher among probands from familial cases when compared to that of controls (P = 0.002). We concluded that CDH1 contributes to NSCL/P with mainly rare, moderately penetrant variants, and CDH1 haploinsufficiency is the likely etiological mechanism.


Plastic Surgery International | 2012

Genetics and Management of the Patient with Orofacial Cleft

Luciano Abreu Brito; Joanna Goes Castro Meira; Gerson Shigeru Kobayashi; Maria Rita Passos-Bueno

Cleft lip or palate (CL/P) is a common facial defect present in 1 : 700 live births and results in substantial burden to patients. There are more than 500 CL/P syndromes described, the causes of which may be single-gene mutations, chromosomopathies, and exposure to teratogens. Part of the most prevalent syndromic CL/P has known etiology. Nonsyndromic CL/P, on the other hand, is a complex disorder, whose etiology is still poorly understood. Recent genome-wide association studies have contributed to the elucidation of the genetic causes, by raising reproducible susceptibility genetic variants; their etiopathogenic roles, however, are difficult to predict, as in the case of the chromosomal region 8q24, the most corroborated locus predisposing to nonsyndromic CL/P. Knowing the genetic causes of CL/P will directly impact the genetic counseling, by estimating precise recurrence risks, and the patient management, since the patient, followup may be partially influenced by their genetic background. This paper focuses on the genetic causes of important syndromic CL/P forms (van der Woude syndrome, 22q11 deletion syndrome, and Robin sequence-associated syndromes) and depicts the recent findings in nonsyndromic CL/P research, addressing issues in the conduct of the geneticist.


Stem Cells International | 2015

Improvement of In Vitro Osteogenic Potential through Differentiation of Induced Pluripotent Stem Cells from Human Exfoliated Dental Tissue towards Mesenchymal-Like Stem Cells.

Felipe Augusto Andre Ishiy; Roberto Dalto Fanganiello; Karina Griesi-Oliveira; Angela May Suzuki; Gerson Shigeru Kobayashi; Andressa Gois Morales; Luciane Portas Capelo; Maria Rita Passos-Bueno

Constraints for the application of MSCs for bone reconstruction include restricted self-renewal and limited cell amounts. iPSC technology presents advantages over MSCs, providing homogeneous cellular populations with prolonged self-renewal and higher plasticity. However, it is unknown if the osteogenic potential of iPSCs differs from that of MSCs and if it depends on the iPSCs originating cellular source. Here, we compared the in vitro osteogenesis between stem cells from human deciduous teeth (SHED) and MSC-like cells from iPSCs from SHED (iPS-SHED) and from human dermal fibroblasts (iPS-FIB). MSC-like cells from iPS-SHED and iPS-FIB displayed fibroblast-like morphology, downregulation of pluripotency markers and upregulation of mesenchymal markers. Comparative in vitro osteogenesis analysis showed higher osteogenic potential in MSC-like cells from iPS-SHED followed by MSC-like cells from iPS-FIB and SHED. CD105 expression, reported to be inversely correlated with osteogenic potential in MSCs, did not display this pattern, considering that SHED presented lower CD105 expression. Higher osteogenic potential of MSC-like cells from iPS-SHED may be due to cellular homogeneity and/or to donor tissue epigenetic memory. Our findings strengthen the rationale for the use of iPSCs in bone bioengineering. Unveiling the molecular basis behind these differences is important for a thorough use of iPSCs in clinical scenarios.


Acta Cirurgica Brasileira | 2010

Alveolar osseous defect in rat for cell therapy: preliminary report

Cassio Eduardo Raposo-Amaral; Gerson Shigeru Kobayashi; Ana Beatriz Almeida; Daniela F. Bueno; Fatima R. Freitas; Luiz Carlos Vulcano; Maria Rita Passos-Bueno; Nivaldo Alonso

PURPOSE To study were to reproduce an alveolar bone defect model in Wistar rats to be used for testing the efficacy of stem cell therapies. Additionally, we also aimed to determine the osteogenesis process of this osseous defect in the 1 month period post-surgery. METHODS The animals were randomly divided into two groups of 7 animals each. A gingivobuccal incision was made, and a bone defect of 28 mm(2) of area was performed in the alveolar region. Animals were killed at 2 weeks after surgery (n=7) and 4 weeks after surgery (n=7). RESULTS The average area of the alveolar defect at time point of 2 weeks was 22.27 +/- 1.31 mm(2) and the average area of alveolar defect at time point of 4 weeks was 9.03 +/- 1.17 mm(2). The average amount of bone formation at time point of 2 weeks was 5.73 +/- 1.31 mm(2) and the average amount of bone formation at time point of 4 weeks was 19 +/- 1.17 mm(2). Statistically significant differences between the amount of bone formation at 2 weeks and 4 weeks after surgery were seen (p=0.003). CONCLUSION The highest rate of ossification occurred mostly from 2 to 4 weeks after surgery. This observation suggests that 4 weeks after the bone defect creation should be a satisfactory timing to assess the potential of bone inductive stem cells to accelerate bone regeneration in Wistar rats.


Acta Cirurgica Brasileira | 2010

An experimental model for the study of craniofacial deformities

André de Mendonça Costa; Gerson Shigeru Kobayashi; Daniela F. Bueno; Marília Trierveiler Martins; Marcus Castro Ferreira; Maria Rita Passos-Bueno; Nivaldo Alonso

PURPOSE To develop an experimental surgical model in rats for the study of craniofacial abnormalities. METHODS Full thickness calvarial defects with 10x10-mm and 5x8-mm dimensions were created in 40 male NIS Wistar rats, body weight ranging from 320 to 420 g. The animals were equally divided into two groups. The periosteum was removed and dura mater was left intact. Animals were killed at 8 and 16 weeks postoperatively and cranial tissue samples were taken from the defects for histological analysis. RESULTS Cranial defects remained open even after 16 weeks postoperatively. CONCLUSION The experimental model with 5x8-mm defects in the parietal region with the removal of the periosteum and maintenance of the integrity of the dura mater are critical and might be used for the study of cranial bone defects in craniofacial abnormalities.


Human Molecular Genetics | 2017

EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome

Emily E. Miller; Gerson Shigeru Kobayashi; Camila Manso Musso; Miranda Allen; Felipe Augusto Andre Ishiy; Luiz Carlos de Caires; Ernesto Goulart; Karina Griesi-Oliveira; Roseli Maria Zechi-Ceide; Antonio Richieri-Costa; Débora Romeo Bertola; Maria Rita Passos-Bueno; Debra L. Silver

Biallelic loss-of-function mutations in the RNA-binding protein EIF4A3 cause Richieri-Costa-Pereira syndrome (RCPS), an autosomal recessive condition mainly characterized by craniofacial and limb malformations. However, the pathogenic cellular mechanisms responsible for this syndrome are entirely unknown. Here, we used two complementary approaches, patient-derived induced pluripotent stem cells (iPSCs) and conditional Eif4a3 mouse models, to demonstrate that defective neural crest cell (NCC) development explains RCPS craniofacial abnormalities. RCPS iNCCs have decreased migratory capacity, a distinct phenotype relative to other craniofacial disorders. Eif4a3 haploinsufficient embryos presented altered mandibular process fusion and micrognathia, thus recapitulating the most penetrant phenotypes of the syndrome. These defects were evident in either ubiquitous or NCC-specific Eif4a3 haploinsufficient animals, demonstrating an autonomous requirement of Eif4a3 in NCCs. Notably, RCPS NCC-derived mesenchymal stem-like cells (nMSCs) showed premature bone differentiation, a phenotype paralleled by premature clavicle ossification in Eif4a3 haploinsufficient embryos. Likewise, nMSCs presented compromised in vitro chondrogenesis, and Meckels cartilage was underdeveloped in vivo. These findings indicate novel and essential requirements of EIF4A3 for NCC migration and osteochondrogenic differentiation during craniofacial development. Altogether, complementary use of iPSCs and mouse models pinpoint unique cellular mechanisms by which EIF4A3 mutation causes RCPS, and provide a paradigm to study craniofacial disorders.


American Journal of Medical Genetics Part A | 2016

Craniosynostosis in 10q26 deletion patients: A consequence of brain underdevelopment or altered suture biology?

Ágatha Cristhina Faria; Eliete Rabbi-Bortolini; Maria Regina Galvêas Oliveira Rebouças; Andréia L. A. de S. Thiago Pereira; Milena G. Tonini Frasson; Rodrigo Atique; Naila Cristina V. Lourenço; Carla Rosenberg; Gerson Shigeru Kobayashi; Maria Rita Passos-Bueno; Flávia Imbroisi Valle Errera

Approximately a hundred patients with terminal 10q deletions have been described. They present with a wide range of clinical features always accompanied by delayed development, intellectual disability and craniofacial dysmorphisms. Here, we report a girl and a boy with craniosynostosis, developmental delay and other congenital anomalies. Karyotyping and molecular analysis including Multiplex Ligation dependent probe amplification (MLPA) and Array Comparative Genomic Hybridization (aCGH) were performed in both patients. We detected a 13.1 Mb pure deletion at 10q26.12‐q26.3 in the girl and a 10.9 Mb pure deletion at 10q26.13‐q26.3 in the boy, both encompassing about 100 genes. The clinical and molecular findings in these patients reinforce the importance of the DOCK1 smallest region of overlap I (SRO I), previously suggested to explain the clinical signs, and together with a review of the literature suggest a second 3.5 Mb region important for the phenotype (SRO II). Genotype‐phenotype correlations and literature data suggest that the craniosynostosis is not directly related to dysregulated signaling in suture development, but may be secondary to alterations in brain development instead. Further, genes at 10q26 may be involved in the molecular crosstalk between brain and cranial vault.

Collaboration


Dive into the Gerson Shigeru Kobayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucas Alvizi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nivaldo Alonso

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge