Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gert Finger is active.

Publication


Featured researches published by Gert Finger.


Proceedings of SPIE | 2014

The 4MOST instrument concept overview

Roger Haynes; Samuel C. Barden; Roelof S. de Jong; Olivier Schnurr; Olga Bellido; Jakob Walcher; Dionne M. Haynes; R. Winkler; Svend-Marian Bauer; Frank Dionies; Allar Saviauk; Cristina Chiappini; A. D. Schwope; Joar Brynnel; Matthias Steinmetz; Richard McMahon; Sofia Feltzing; Patrick Francois; Scott Trager; Ian R. Parry; M. J. Irwin; Nicholas A. Walton; David A. King; David Sun; Eduaro Gonzalez-Solares; Ian Tosh; Gavin Dalton; Kevin Middleton; P. Bonifacio; Pascal Jagourel

The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of ~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical, control, data management and operations concepts; and initial performance estimates.


Astronomical Telescopes and Instrumentation | 2003

SINFONI: integral field spectroscopy at 50-milli-arcsecond resolution with the ESO VLT

F. Eisenhauer; Henri Bonnet; Roberto Abuter; Klaus Bickert; Fabio Binca-Marchet; Joar Brynnel; Ralf Conzelmann; Bernard Delabre; Rob Conaldson; Jacopo Farinato; Enrico Fedrigo; Gert Finger; R. Genzel; Norbert Hubin; Christof Iserlohe; Markus Kasper; Markus Kissler-Patig; Guy J. Monnet; Claudia Röhrle; J. Schreiber; S. Ströbele; Matthias Tecza; Niranjan A. Thatte; Harald Weisz

SINFONI is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT. The Adaptive OPtics Module (built by the ESO Adaptive Optics Group) is a 60-elements curvature-sensor based system, designed for operations with natural or sodium laser guide stars. The near-infrared integral field spectrometer SPIFFI (built by the Infrared Group of MPE) provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300. The adaptive optics module is in the phase of integration; the spectrometer is presented tested in the laboratory. We provide an overview of the project, with particular emphasis on the problems encountered in designing and building an adaptive optics assisted spectrometer.


Proceedings of SPIE | 2004

CRIRES: A High Resolution Infrared Spectrograph for ESO’s VLT

Hans-Ulrich Kaeufl; Pascal Ballester; Peter Biereichel; Bernard Delabre; R. Donaldson; Reinhold J. Dorn; Enrico Fedrigo; Gert Finger; Gerhard Fischer; F. Franza; Domingo Gojak; Gotthard Huster; Yves Jung; Jean-Louis Lizon; Leander Mehrgan; Manfred Meyer; Alan F. M. Moorwood; Jean-Francois Pirard; Jerome Paufique; Eszter Pozna; Ralf Siebenmorgen; Armin Silber; Joerg Stegmeier; Stefan Wegerer

CRIRES is a cryogenic, pre-dispersed, infrared echelle spectrograph designed to provide a resolving power lambda/(Delta lambda) of 105 between 1 and 5mu m at the Nasmyth focus B of the 8m VLT unit telescope #1 (Antu). A curvature sensing adaptive optics system feed is used to minimize slit losses and to provide diffraction limited spatial resolution along the slit. A mosaic of 4 Aladdin~III InSb-arrays packaged on custom-fabricated ceramics boards has been developed. This provides for an effective 4096x512 pixel focal plane array, to maximize the free spectral range covered in each exposure. Insertion of gas cells to measure high precision radial velocities is foreseen. For measurement of circular polarization a Fresnel rhomb in combination with a Wollaston prism for magnetic Doppler imaging is foreseen. The implementation of full spectropolarimetry is under study. This is one result of a scientific workshop held at ESO in late 2003 to refine the science-case of CRIRES. Installation at the VLT is scheduled during the first half of 2005. Here we briefly recall the major design features of CRIRES and describe its current development status including a report of laboratory testing.


Astronomical Telescopes and Instrumentation | 2003

NAOS-CONICA first on sky results in a variety of observing modes

Rainer Lenzen; Markus Hartung; Wolfgang Brandner; Gert Finger; Norbert Hubin; Francois Lacombe; Anne-Marie Lagrange; Matthew D. Lehnert; Alan F. M. Moorwood; David Mouillet

The Adaptive Optics NIR Instrument NAOS-CONICA has been commissioned at the VLT (UT4) between November 2001 and March 2002. After summarizing the observational capabilities of this multimode instrument in combination with the powerful AO-system, we will present first on sky results of the instrumental performance for several non-direct imaging modes: High spatial resolution slit-spectroscopy in the optical and thermal NIR region has been tested. For compact sources below 2 arcsec extension, Wollaston prism polarimetry is used. For larger objects the linear polarization pattern can be analyzed by wire grids down to the diffraction limit. Coronographic masks are applied to optimize imaging and polarimetric capabilities. The cryogenic Fabry-Perot Interferometer in combination with an 8m-telescope AO-system is shown to be a powerful tool for imaging spectroscopy (3D-scans).


Astronomy and Astrophysics | 2008

HAWK-I: the high-acuity wide-field K-band imager for the ESO Very Large Telescope

Markus Kissler-Patig; Jeff Pirard; M. Casali; Alan F. M. Moorwood; N. Ageorges; C. Alves de Oliveira; P. Baksai; L. R. Bedin; Eduardo Bendek; Peter Biereichel; Bernhard Delabre; Reinhold J. Dorn; R. Esteves; Gert Finger; Domingo Gojak; Gotthard Huster; Yves Jung; M. Kiekebush; B. Klein; Franz Koch; J.-L. Lizon; Leander Mehrgan; Monika G. Petr-Gotzens; J. Pritchard; F. Selman; Jörg Stegmeier

We describe the design, development, and performance of HAWK-I, the new High-Acuity Wide-field K-band Imager for ESO’s Very Large Telescope, which is equipped with a mosaic of four 2 k × 2 k arrays and operates from 0.9−2.4 μm over 7.5 � × 7.5 � with 0.1 �� pixels. A novel feature is the use of all reflective optics that, together with filters of excellent throughput and detectors of high quantum efficiency, has yielded an extremely high throughput. Commissioning and science verification observations have already delivered a variety of excellent and deep images that demonstrate its high scientific potential for addressing important astrophysical questions of current interest.


Proceedings of SPIE | 2012

4MOST-4-metre Multi-Object Spectroscopic Telescope

Roelof S. de Jong; Olga Bellido-Tirado; Cristina Chiappini; Éric Depagne; Roger Haynes; Diana Johl; Olivier Schnurr; A. D. Schwope; Jakob Walcher; Frank Dionies; Dionne M. Haynes; Andreas Kelz; Francisco S. Kitaura; Georg Lamer; Ivan Minchev; Volker Müller; Sebastián E. Nuza; Jean-Christophe Olaya; Tilmann Piffl; Emil Popow; Matthias Steinmetz; Ugur Ural; Mary E K Williams; R. Winkler; Lutz Wisotzki; Wolfgang R. Ansorge; Manda Banerji; Eduardo Gonzalez Solares; M. J. Irwin; Robert C. Kennicutt

4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R<5000 (λ~390-930 nm) and ~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm and 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].


Proceedings of SPIE | 2004

HAWK-I: A new wide-field 1- to 2.5-μm imager for the VLT

Jean-Francois Pirard; Markus Kissler-Patig; Alan F. M. Moorwood; Peter Biereichel; Bernard Delabre; Reinhold J. Dorn; Gert Finger; Domingo Gojak; Gotthard Huster; Yves Jung; Franz Koch; Miska Le Louarn; Jean-Louis Lizon; Leander Mehrgan; Eszter Pozna; Armin Silber; Barbara Sokar; Joerg Stegmeier

HAWK-I (High Acuity, Wide field K-band Imaging) is a 0.9 μm - 2.5 μm wide field near infrared imager designed to sample the best images delivered over a large field of 7.5 arcmin x 7.5 arcmin. HAWK-I is a cryogenic instrument to be installed on one of the Very Large Telescope Nasmyth foci. It employs a catadioptric design and the focal plane is equipped with a mosaic of four HAWAII 2 RG arrays. Two filter wheels allow to insert broad band and narrow band filters. The instrument is designed to remain compatible with an adaptive secondary system under study for the VLT.


Proceedings of SPIE | 2014

SAPHIRA detector for infrared wavefront sensing

Gert Finger; Ian Baker; Domingo Alvarez; Derek Ives; Leander Mehrgan; Manfred Meyer; Jörg Stegmeier; Harald Weller

The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].


Proceedings of SPIE | 2012

Evaluation and optimization of NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry

Gert Finger; Ian Baker; Domingo Alvarez; Derek Ives; Leander Mehrgan; Manfred Meyer; Joerg Stegmeier; Peter Thorne; Harald Weller

The performance of the current high speed near infrared HgCdTe sensors operating in fringe trackers, wavefront sensors and tip-tilt sensors is severely limited by the noise of the silicon readout interface circuit (ROIC), even if state-of-the- art CMOS designs are used. A major improvement can only be achieved by the amplification of the photoelectron signal directly at the point of absorption by means of avalanche gain inside the infrared pixel. Unlike silicon, HgCdTe offers noiseless avalanche gain. This has been verified with the LPE grown 320x256 pixel λc=2.5 μm HgCdTe eAPD arrays from SELEX both on a prototype ROIC called SWALLOW and on a newly developed ROIC, specifically designed for AO applications, called SAPHIRA. The novel features of the new SAPHIRA ROIC, which has 32 parallel video channels operating at 5 MHz, will be described, together with the new high speed NGC data acquisition system. Performance results will be discussed for both ROICs. The LPE material on the SWALLOW prototype was excellent and allowed operation at an APD gain as high as 33. Unfortunately, the LPE material of the first devices on the SAPHIRA ROIC suffers from problems which are now understood. However, due to the excellent performance of the SAPHIRA ROIC even with the limitations of present HgCdTe material, it is possible with simple double correlated sampling to detect test patterns with signal levels of 1 electron. An outlook will be given on further developments of heterojunctions grown by MOVPE, which eventually may replace eAPD arrays grown by LPE.


Astronomical Telescopes and Instrumentation | 1998

ESO infrared detector high-speed array control and processing electronic IRACE

Manfred Meyer; Gert Finger; Hamid Mehrgan; Gianalfredo Nicolini; Joerg Stegmeier

The ESO IR detector high speed array control and processing electronic IRACE is designed as a modular system and supports readout and data processing of arrays with four as well as multiple output channels. In addition the system can handle multiple separate arrays and the data re routed to multiple processing chains. Detector front-ends are galvanically separated form data processing and system administration with fiberoptic links. Interfaces to different data processing systems for on-line data handling are implemented. The paper describes principles of system operation, and the achieved readout and on-line processing speeds.

Collaboration


Dive into the Gert Finger's collaboration.

Top Co-Authors

Avatar

Manfred Meyer

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Alan F. M. Moorwood

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Leander Mehrgan

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Reinhold J. Dorn

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Joerg Stegmeier

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Derek Ives

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jörg Stegmeier

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Norbert Hubin

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Peter Biereichel

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge