Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gert H. J. Kema is active.

Publication


Featured researches published by Gert H. J. Kema.


Nature | 2012

The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

Angélique D’Hont; Jean-Marc Aury; Franc-Christophe Baurens; Françoise Carreel; Olivier Garsmeur; Benjamin Noel; Stéphanie Bocs; Gaëtan Droc; Mathieu Rouard; Corinne Da Silva; Kamel Jabbari; Céline Cardi; Julie Poulain; Marlène Souquet; Karine Labadie; Cyril Jourda; Juliette Lengellé; Marguerite Rodier-Goud; Adriana Alberti; Maria Bernard; Margot Corréa; Saravanaraj Ayyampalayam; Michael R. McKain; Jim Leebens-Mack; Diane Burgess; Michael Freeling; Didier Mbéguié-A-Mbéguié; Matthieu Chabannes; Thomas Wicker; Olivier Panaud

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon–eudicotyledon divergence.


Lancet Infectious Diseases | 2009

Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use?

Paul E. Verweij; Eveline Snelders; Gert H. J. Kema; Emilia Mellado; Willem J. G. Melchers

Invasive aspergillosis due to multi-azole-resistant Aspergillus fumigatus has emerged in the Netherlands since 1999, with 6.0-12.8% of patients harbouring resistant isolates. The presence of a single resistance mechanism (denoted by TR/L98H), which consists of a substitution at codon 98 of cyp51A and a 34-bp tandem repeat in the gene-promoter region, was found in over 90% of clinical A fumigatus isolates. This is consistent with a route of resistance development through exposure to azole compounds in the environment. Indeed, TR/L98H A fumigatus isolates were cultured from soil and compost, were shown to be cross-resistant to azole fungicides, and genetically related to clinical resistant isolates. Azoles are abundantly used in the environment and the presence of A fumigatus resistant to medical triazoles is a major challenge because of the possibility of worldwide spread of resistant isolates. Reports of TR/L98H in other European countries indicate that resistance might already be spreading.


PLOS Genetics | 2011

Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis

Stephen B. Goodwin; Sarrah Ben M'Barek; Braham Dhillon; Alexander H J Wittenberg; Charles F. Crane; James K. Hane; Andrew J Foster; Theo van der Lee; Jane Grimwood; Andrea Aerts; John Antoniw; Andy M. Bailey; Burt H. Bluhm; Judith Bowler; Jim Bristow; Ate van der Burgt; Blondy Canto-Canche; Alice C. L. Churchill; Laura Conde-Ferràez; Hans J. Cools; Pedro M. Coutinho; Michael Csukai; Paramvir Dehal; Pierre J. G. M. de Wit; Bruno Giuliano Garisto Donzelli; Henri C. van de Geest; Roeland C. H. J. van Ham; Kim E. Hammond-Kosack; Bernard Henrissat; Andrzej Kilian

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


PLOS Pathogens | 2012

Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

Robin A. Ohm; Nicolas Feau; Bernard Henrissat; Conrad L. Schoch; Benjamin A. Horwitz; Kerrie Barry; Bradford Condon; Alex Copeland; Braham Dhillon; Fabian Glaser; Cedar Hesse; Idit Kosti; Kurt LaButti; Erika Lindquist; Susan Lucas; Asaf Salamov; Rosie E. Bradshaw; Lynda M. Ciuffetti; Richard C. Hamelin; Gert H. J. Kema; Christopher B. Lawrence; James A. Scott; Joseph W. Spatafora; B. Gillian Turgeon; Pierre J. G. M. de Wit; Shaobin Zhong; Stephen B. Goodwin; Igor V. Grigoriev

The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.


European Journal of Plant Pathology | 2003

Major Changes in Fusarium spp. in Wheat in the Netherlands

Cees Waalwijk; P. Kastelein; Ineke de Vries; Zoltan Kerényi; Theo van der Lee; Thamara Hesselink; J. Köhl; Gert H. J. Kema

The re-emergence of fusarium head blight throughout the world and especially in Western Europe prompted a survey of the situation in the Netherlands. To allow for a high throughput screening of large numbers of samples, a diagnostic PCR method was developed to detect the most common species of Fusarium occurring on wheat. Seven primer pairs were tested for their ability to identify isolates of Fusarium avenaceum, F. culmorum, F. graminearum, F. poae, F. proliferatum and Microdochium nivale var. majus and M. nivale var. nivale. Each primer pair only generated a PCR product with the corresponding Fusarium species and all PCR fragments had different molecular sizes. This allowed the generation of these amplicons using a mixture of all seven primer pairs. The robustness of this multiplex PCR encouraged us to screen a large series of isolates collected in 2000 and 2001. In both years 40 fields were sampled leading to a collection of 209 isolates from 2000 and 145 isolates from 2001. The results of the multiplex PCR demonstrated that F. graminearum was the most abundant species in the Fusarium complex on wheat in both years. This is in sharp contrast to reports from the 1980s and early 1990s, which found F. culmorum as the predominant species. Primers derived from the tri7 and tri13 genes, which are implicated in the acetylation and oxygenation of the C-4 atom of the backbone of the trichothecene molecule, were used to discriminate between deoxynivalenol and nivalenol (NIV) producers. The populations of F. culmorum and F. graminearum both showed a slight increase in NIV-producers in 2001.


Applied and Environmental Microbiology | 2009

Possible Environmental Origin of Resistance of Aspergillus fumigatus to Medical Triazoles

Eveline Snelders; Robert A. G. Huis in 't Veld; Anthonius J. M. M. Rijs; Gert H. J. Kema; Willem J. G. Melchers; Paul E. Verweij

ABSTRACT We reported the emergence of resistance to medical triazoles of Aspergillus fumigatus isolates from patients with invasive aspergillosis. A dominant resistance mechanism was found, and we hypothesized that azole resistance might develop through azole exposure in the environment rather than in azole-treated patients. We investigated if A. fumigatus isolates resistant to medical triazoles are present in our environment by sampling the hospital indoor environment and soil from the outdoor environment. Antifungal susceptibility, resistance mechanisms, and genetic relatedness were compared with those of azole-resistant clinical isolates collected in a previous study. Itraconazole-resistant A. fumigatus (five isolates) was cultured from the indoor hospital environment as well as from soil obtained from flower beds in proximity to the hospital (six isolates) but never from natural soil. Additional samples of commercial compost, leaves, and seeds obtained from a garden center and a plant nursery were also positive (four isolates). Cross-resistance was observed for voriconazole, posaconazole, and the azole fungicides metconazole and tebuconazole. Molecular analysis showed the presence of the dominant resistance mechanism, which was identical to that found in clinical isolates, in 13 of 15 environmental isolates, and it showed that environmental and clinical isolates were genetically clustered apart from nonresistant isolates. Patients with azole-resistant aspergillosis might have been colonized with azole-resistant isolates from the environment.


European Journal of Plant Pathology | 2004

Quantitative detection of Fusarium species in wheat using TaqMan

Cees Waalwijk; Ruth van der Heide; Ineke de Vries; Theo van der Lee; Cor Schoen; Guillaume Costrel-de Corainville; Isolde Häuser-Hahn; P. Kastelein; J. Köhl; Philippe Lonnet; Thierry Demarquet; Gert H. J. Kema

Fusarium head blight (FHB) of wheat and other small-grain cereals is a disease complex caused by several fungal species. To monitor and quantify the major species in the FHB complex during the growing season, real-time PCR was developed. TaqMan primers and probes were designed that showed high specificity for Fusarium avenaceum, F. culmorum, F. graminearum, F. poae and Microdochium nivale var. majus. Inclusion of an internal PCR control and serial dilutions of pure genomic DNAs allowed accurate determination of the concentration of fungal DNA for each of these species in leaves, ears as well as harvested grains of winter wheat. The DNA concentration of F. graminearum in grain samples correlated (r2= 0.7917) with the incidence of this species on the grain as determined by isolation from individual kernels. Application of the TaqMan technology to field samples collected in 40 wheat crops in the Netherlands during the growing season of 2001 revealed that M. nivale var. majus predominated on leaves early in the season (GS 45-65). Ears and harvested grains from the same fields, however, showed F. graminearum as the major species. In 2002, grain samples from 40 Dutch fields showed a much wider range of species, whereas in ears from 29 wheat crops in France, F. graminearum was the predominant species. The concentration of DON correlated equally well with the incidence of the DON-producing species F. culmorum and F. graminearum in the grain samples (r2= 0.8232) as well as with total DNA of both these species (r2= 0.8259). The Fusarium TaqMan technology is an important tool to quantify and monitor the dynamics of individual species of the complex causing FHB in cereals during the growing season. This versatile tool has been applied in a comparison of different genotypes, but can also be applied to other disease management systems, e.g. fungicide treatments.


PLOS ONE | 2012

Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus

Eveline Snelders; Simone M. T. Camps; Anna Karawajczyk; Gijs Schaftenaar; Gert H. J. Kema; Henrich A. van der Lee; Corné H. W. Klaassen; Willem J. G. Melchers; Paul E. Verweij

Background Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR34/L98H). We investigated if TR34/L98H could have developed through exposure to DMIs. Methods and Findings Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in the Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR34/L98H isolate in 1998. Through microsatellite genotyping of TR34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. Conclusions Our findings support a fungicide-driven route of TR34/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs.


PLOS Genetics | 2012

The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry.

Pierre J. G. M. de Wit; Ate van der Burgt; B. Ökmen; I. Stergiopoulos; Kamel A. Abd-Elsalam; Andrea Aerts; Ali H. Bahkali; H. Beenen; Pranav Chettri; Murray P. Cox; Erwin Datema; Ronald P. de Vries; Braham Dhillon; Austen R. D. Ganley; S.A. Griffiths; Yanan Guo; Richard C. Hamelin; Bernard Henrissat; M. Shahjahan Kabir; Mansoor Karimi Jashni; Gert H. J. Kema; Sylvia Klaubauf; Alla Lapidus; Anthony Levasseur; Erika Lindquist; Rahim Mehrabi; Robin A. Ohm; Timothy J. Owen; Asaf Salamov; Arne Schwelm

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.


Phytopathology | 2002

A Gene-for-Gene Relationship Between Wheat and Mycosphaerella graminicola, the Septoria Tritici Blotch Pathogen

P. A. Brading; Els C. P. Verstappen; Gert H. J. Kema; J. K. M. Brown

ABSTRACT Specific resistances to isolates of the ascomycete fungus Mycosphaerella graminicola, which causes Septoria tritici blotch of wheat, have been detected in many cultivars. Cvs. Flame and Hereward, which have specific resistance to the isolate IPO323, were crossed with the susceptible cv. Longbow. The results of tests on F1 and F2 progeny indicated that a single semidominant gene controls resistance to IPO323 in each of the resistant cultivars. This was confirmed in F3 families of Flame x Longbow, which were either homozygous resistant, homozygous susceptible, or segregating in tests with IPO323 but were uniformly susceptible to another isolate, IPO94269. None of 100 F2 progeny of Flame x Hereward were susceptible to IPO323, indicating that the resistance genes in these two cultivars are the same, closely linked, or allelic. The resistance gene in cv. Flame was mapped to the short arm of chromosome 3A using microsatellite markers and was named Stb6. Fifty-nine progeny of a cross between IPO323 and IPO94269 were used in complementary genetic analysis of the pathogen to test a gene-for-gene relationship between Stb6 and the avirulence gene in IPO323. Avirulence to cvs. Flame, Hereward, Shafir, Bezostaya 1, and Vivant and the breeding line NSL92-5719 cosegregated, and the ratio of virulent to avirulent was close to 1:1, suggesting that these wheat lines may all recognize the same avirulence gene and may all have Stb6. Together, these data provide the first demonstration that isolate-specific resistance of wheat to Septoria tritici blotch follows a gene-for-gene relationship.

Collaboration


Dive into the Gert H. J. Kema's collaboration.

Top Co-Authors

Avatar

Cees Waalwijk

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Theo van der Lee

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Stephen B. Goodwin

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Rahim Mehrabi

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Pierre J. G. M. de Wit

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Els C. P. Verstappen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Paul E. Verweij

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Braham Dhillon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Manoel Souza

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Jean Carlier

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge