Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gert Raskin is active.

Publication


Featured researches published by Gert Raskin.


Astronomy and Astrophysics | 2011

HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope

Gert Raskin; H. Van Winckel; H. Hensberge; Alain Jorissen; H. Lehmann; C. Waelkens; G. Avila; J.-P. de Cuyper; P. Degroote; Rene Dubosson; L. Dumortier; Y. Frémat; Uwe Laux; Bernard Michaud; Johan Morren; J. Perez Padilla; Wim Pessemier; S. Prins; K. Smolders; S. Van Eck; J. Winkler

The HERMES high-resolution spectrograph project aims at exploiting the specific potential of small but flexible telescopes in observational astrophysics. The optimised optical design of the spectrograph is based on the well-proven concept of white-pupil beam folding for high-resolution spectroscopy. In this contribution we present the complete project, including the spectrograph design and procurement details, the telescope adaptor and calibration unit, the detector system, as well as the optimised data-reduction pipeline. We present a detailed performance analysis to show that the spectrograph performs as specified both in optical quality and in total efficiency. With a spectral resolution of 85 000 (63 000 for the low-resolution fibre), a spectral coverage from 377 to 900 nm in a single exposure and a peak efficiency of 28%, HERMES proves to be an ideal instrument for building up time series of high-quality data of variable (stellar) phenomena.


Astronomy and Astrophysics | 2009

Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators

H. Van Winckel; T. Lloyd Evans; Maryline Briquet; P. De Cat; P. Degroote; W. De Meester; J. De Ridder; Pieter Deroo; M. Desmet; R. Drummond; L. Eyer; Martin A. T. Groenewegen; Katrien Kolenberg; D. Kilkenny; D. Ladjal; K. Lefever; Thomas Maas; F. Marang; Peter Martinez; Roy Ostensen; Gert Raskin; M. Reyniers; P. Royer; S. Saesen; K. Uytterhoeven; J. Vanautgaerden; B. Vandenbussche; F. van Wyk; M. Vučković; C. Waelkens

Context. The influence of binarity on the late stages of stellar evolut ion. Aims. While the first binary post-AGB stars were serendipitously d iscovered, the distinct characteristics of their Spectral Energy Distribution (SED) allowed us to launch a more systematic search for binaries. We selected post-AGB objects which show a broad dust excess often starting already at H or K, pointing to the presence of a gravitationally bound dusty disc in the system. We started a very extensive multi-wavelength study of those systems and here we report on our radial velocity and photometric monitoring results for six stars of early F type, which are pulsators of small amplitude. Methods. To determine the radial velocity of low signal-to-noise time-series, we constructed dedicated auto-correlation masks based on high signal-to-noise spectra, used in our published chemical studies. The radial velocity variations were subjecte d to detailed analysis to differentiate between pulsational variability and variabilit y due to orbital motion. When available, the photometric monitoring data were used to complement the time series of radial velocity data and to establish the nature of the pulsation. Finally orbital minimalisation was performed to constrain the orbital elements. Results. All of the six objects are binaries, with orbital periods ran ging from 120 to 1800 days. Five systems have non-circular orbits. The mass functions range from 0.004 to 0.57 M⊙ and the companions are likely unevolved objects of (very) low initial mass. We argue that these binaries must have been subject to severe binary interaction when the primary was a cool supergiant. Although the origin of the circumstellar disc is not well understood, the disc is generally believed to be formed during this strong interaction phase. The eccentric orbits of these highly evolved objects remain poorly understood. In one object the line-of-sight is grazi ng the edge of the puffed-up inner rim of the disc. Conclusions. These results corroborate our earlier statement that evolved objects in binary stars create a Keplerian dusty circumbinary disc. With the measured orbits and mass functions we conclude that the circumbinary discs seem to have a major impact on the evolution of a significant fraction of binary systems.


Monthly Notices of the Royal Astronomical Society | 2013

Atmospheric parameters of 169 F-, G-, K- and M-type stars in the Kepler field

J. Molenda-Żakowicz; S. G. Sousa; Antonio Frasca; K. Uytterhoeven; Maryline Briquet; H. Van Winckel; D. Drobek; E. Niemczura; P. Lampens; J. Lykke; S. Bloemen; J. F. Gameiro; C. Jean; D. Volpi; N. Gorlova; A. Mortier; M. Tsantaki; Gert Raskin

The asteroseismic and planetary studies, like all research related to stars, need precise and accurate stellar atmospheric parameters as input. We aim at deriving the effective temperature (Teff), the surface gravity (logg), the metallicity ([Fe/H]), the projected rotational velocity (v sini) and the MK type for 169 F, G, K, and M-type Kepler targets which were observed spectroscopically from the ground with five different instruments. We use two different spectroscopic methods to analyse 189 high-resolution, high-signalto-noise spectra acquired for the 169 stars. For 67 stars, the spectroscopic atmospheric parameters are derived for the first time. KIC 9693187 and 11179629 are discovered to be double-lined spectroscopic binary systems. The results obtained for those stars for which independent determinations of the atmospheric parameters are available in the literature are used for a comparative analysis. As a result, we show that for solar-type stars the accuracy of present determinations of atmospheric parameters is ± 150 K in Teff, ± 0.15 dex in [Fe/H], and ± 0.3 dex in logg. Finally, we confirm that the curveof-growth analysis and the method of spectral synthesis yield systematically different atmospheric parameters when they are applied to stars hotter than 6,000 K.


Monthly Notices of the Royal Astronomical Society | 2011

Chemically tagging the Hyades stream: does it partly originate from the Hyades cluster?

L. Pompéia; T. Masseron; Benoit Famaey; S. Van Eck; Ann Jorissen; Ivan Minchev; Arnaud Siebert; Christopher Sneden; Jrd Lépine; Christos Siopis; Gianfranco Gentile; Tyl Dermine; Ester Pasquato; H. Van Winckel; C. Waelkens; Gert Raskin; S. Prins; Wim Pessemier; H. Hensberge; Y. Frémat; L. Dumortier; Olivier Bienayme

The Hyades stream has long been thought to be a dispersed vestige of the Hyades cluster. However, recent analyses of the parallax distribution, of the mass function, and of the actionspace distribution of stream stars have shown it to be rather composed of orbits trapped at a resonance of a density disturbance. This resonant scenario should leave a clearly different signature in the element abundances of stream stars than the dispersed cluster scenario, since the Hyades cluster is chemically homogeneous. Here, we study the metallicity as well as the element abundances of Li, Na, Mg, Fe, Zr, Ba, La, Ce, Nd and Eu for a random sample of stars belonging to the Hyades stream, and compare them with those of stars from the Hyades cluster. From this analysis: (i) we independently confirm that the Hyades stream cannot be solely composed of stars originating in the Hyades cluster; (ii) we show that some stars (namely 2/21) from the Hyades stream nevertheless have abundances compatible with an origin in the cluster; (iii) we emphasize that the use of Li as a chemical tag of the cluster origin of mainsequence stars is very efficient in the range 5500 K ≤ T eff ≤ 6200 K, since the Li sequence in the Hyades cluster is very tight, while at the same time spanning a large abundance range; (iv) we show that, while this evaporated population has a metallicity excess of ∼0.2 dex with respect to the local thin-disc population, identical to that of the Hyades cluster, the remainder of the Hyades stream population has still a metallicity excess of ∼0.06–0.15 dex, consistent with an origin in the inner Galaxy and (v) we show that the Hyades stream can be interpreted as an inner 4:1 resonance of the spiral pattern: this then also reproduces an orbital family compatible with the Sirius stream, and places the origin of the Hyades stream up to 1 kpc inwards from the solar radius, which might explain the observed metallicity excess of the stream population.


Pflügers Archiv: European Journal of Physiology | 1993

An Automatic Monitoring-system for Epithelial-cell Height

W. Vandriessche; P. Desmet; Gert Raskin

This paper describes an automatic method to measure cell height (h) of epithelia grown as monolayers on transparent filter supports. Tissues are mounted in an Ussing-type chamber enabling solution exchange on both sides. The apical and basal side of the epithelial cells are marked with fluorescent beads. The image of the fluospheres is captured with a video camera and processed by a computer-based video imaging system. One basal reference bead in a gelatin layer on the filter support and up to three beads attached at the apical surface are used to monitor changes in cell height of three cells simultaneously. The focusing of the microbeads is done automatically by moving the objective with a piezoelectric device mounted on the nosepiece of the microscope. The algorithm for locating the bead is based on the changes in fluorescent light intensity emitted by the fluospheres. The method has an accuracy higher than 0.1 μm and a time resolution as low as 6 s if measurements are restricted to one bead at the apical side. The method was tested on artificial model systems and used to measure volume changes in renal cultured epithelia (A6) after exposing the serosal surface to hypotonic solutions and replacing cell-impermeable sucrose by an organic compound (glycerol) with a smaller reflection coefficient. Serosal hypotonicity elicited a rapid volume increase followed by regulatory volume decrease, whereas the organic compound replacement caused a steady increase in cell volume.


Astronomy and Astrophysics | 2007

Long term photometric monitoring with the Mercator telescope - Frequencies and mode identification of variable O-B stars

P. De Cat; Maryline Briquet; Conny Aerts; K. Goossens; S. Saesen; J. Cuypers; K. Yakut; Richard Scuflaire; Marc-Antoine Dupret; K. Uytterhoeven; H. Van Winckel; Gert Raskin; G. Davignon; L. Le Guillou; R. Van Malderen; Maarten Reyniers; B. Acke; W. De Meester; J. Vanautgaerden; B. Vandenbussche; T. Verhoelst; C. Waelkens; Pieter Deroo; K. Reyniers; M. Ausseloos; E. Broeders; J. Daszyńska-Daskiewicz; J. Debosscher; S. De Ruyter; K. Lefever

Aims. We selected a large sample of O-B stars that were considered as (candidate) slowly pulsating B, beta Cep, and Maia stars after the analysis of their hipparcos data. We analysed our new seven passband geneva data collected for these stars during the first three years of scientific operations of the mercator telescope. We performed a frequency analysis for 28 targets with more than 50 high-quality measurements to improve their variability classification. For the pulsating stars, we tried both to identify the modes and to search for rotationally split modes. Methods: We searched for frequencies in all the geneva passbands and colours by using two independent frequency analysis methods and we applied a 3.6 S/N-level criterion to locate the significant peaks in the periodograms. The modes were identified by applying the method of photometric amplitudes for which we calculated a large, homogeneous grid of equilibrium models to perform a pulsational stability analysis. When both the radius and the projected rotational velocity of an object are known, we determined a lower limit for the rotation frequency to estimate the expected frequency spacings in rotationally split pulsation modes. Results: We detected 61 frequencies, among which 33 are new. We classified 21 objects as pulsating variables (7 new confirmed pulsating stars, including 2 hybrid beta Cep/SPB stars), 6 as non-pulsating variables (binaries or spotted stars), and 1 as photometrically constant. All the Maia candidates were reclassified into other variability classes. We performed mode identification for the pulsating variables for the first time. The most probable l value is 0, 1, 2, and 4 for 1, 31, 9, and 5 modes, respectively, including only 4 unambiguous identifications. For 7 stars we cannot rule out that some of the observed frequencies belong to the same rotationally split mode. For 4 targets we may begin to resolve close frequency multiplets. Based on observations collected with the p7 photometer attached to the Flemish 1.2-m mercator telescope situated at the Roque de los Muchachos observatory on La Palma (Spain). Section [see full text], including Figs. is only available in electronic form at http://www.aanda.org, and Tables 2 and 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/463/243


Astrophysical Journal Supplement Series | 2015

Gravity-mode period spacings as seismic diagnostic for a sample of gamma Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

T. Van Reeth; A. Tkachenko; Conny Aerts; P. I. Pápics; S. Triana; Konstanze Zwintz; P. Degroote; J. Debosscher; S. Bloemen; V. S. Schmid; K. De Smedt; Y. Frémat; A. S. Fuentes; W. Homan; M. Hrudkova; R. Karjalainen; R. Lombaert; P. Nemeth; Roy Ostensen; G. C. Van de Steene; J. Vos; Gert Raskin; H. Van Winckel

Gamma Doradus stars (hereafter ? Dor stars) are gravity-mode pulsators of spectral type A or F. Such modes probe the deep stellar interior, offering a detailed fingerprint of their structure. Four-year high-precision space-based Kepler photometry of ? Dor stars has become available, allowing us to study these stars with unprecedented detail. We selected, analyzed, and characterized a sample of 67 ? Dor stars for which we have Kepler observations available. For all the targets in the sample we assembled high-resolution spectroscopy to confirm their F-type nature. We found fourteen binaries, among which are four single-lined binaries, five double-lined binaries, two triple systems, and three binaries with no detected radial velocity variations. We estimated the orbital parameters whenever possible. For the single stars and the single-lined binaries, fundamental parameter values were determined from spectroscopy. We searched for period spacing patterns in the photometric data and identified this diagnostic for 50 of the stars in the sample, 46 of which are single stars or single-lined binaries. We found a strong correlation between the spectroscopic and the period spacing values, confirming the influence of rotation on ? Dor-type pulsations as predicted by theory. We also found relations between the dominant g-mode frequency, the longest pulsation period detected in series of prograde modes, , and .


Monthly Notices of the Royal Astronomical Society | 2012

Mass ratio from Doppler beaming and Rømer delay versus ellipsoidal modulation in the Kepler data of KOI-74

S. Bloemen; T. R. Marsh; P. Degroote; Roy Ostensen; P. I. Pápics; Conny Aerts; D. Koester; B. T. Gänsicke; E. Breedt; R. Lombaert; S. Pyrzas; C. M. Copperwheat; Katrina Exter; Gert Raskin; H. Van Winckel; S. Prins; Wim Pessemier; Y. Frémat; H. Hensberge; Alain Jorissen; S. Van Eck

We present a light curve analysis and radial velocity study of KOI-74, an eclipsing A star\(+\) white dwarf binary with a 5.2 day orbit. Aside from new spectroscopy covering the orbit of the system, we used 212 days of publicly available Kepler observations and present the first complete light curve fitting to these data, modelling the eclipses and transits, ellipsoidal modulation, reflection, and Doppler beaming. Markov Chain Monte Carlo simulations are used to determine the system parameters and uncertainty estimates. Our results are in agreement with earlier studies, except that we find an inclination of \(87.0\pm 0.4^\circ \), which is significantly lower than the previously published value. The altered inclination leads to different values for the relative radii of the two stars and therefore also the mass ratio deduced from the ellipsoidal modulations seen in this system. We find that the mass ratio derived from the radial velocity amplitude (\(q=0.104\pm 0.004\)) disagrees with that derived from the ellipsoidal modulation (\(q=0.052\pm 0.004\) assuming corotation). This mismatch was found before, but with our smaller inclination, the discrepancy is even larger than previously reported. Accounting for the rapid rotation of the A-star, instead of assuming corotation with the binary orbit, is found to increase the discrepancy even further by lowering the mass ratio to \(q=0.047\pm 0.004\). These results indicate that one has to be extremely careful in using the amplitude of an ellipsoidal modulation signal in a close binary to determine the mass ratio, when a proof of corotation is not firmly established. The same problem could arise whenever an ellipsoidal modulation amplitude is used to derive the mass of a planet orbiting a host star that is not in corotation with the planet’s orbit. The radial velocities that can be inferred from the detected Doppler beaming in the light curve are found to be in agreement with our spectroscopic radial velocity determination. We also report the first measurement of Romer delay in a light curve of a compact binary. This delay amounts to \(-56\pm 17\) s and is consistent with the mass ratio derived from the radial velocity amplitude. The firm establishment of this mass ratio at \(q=0.104\pm 0.004\) leaves little doubt that the companion of KOI-74 is a low mass white dwarf.


Pflügers Archiv: European Journal of Physiology | 1999

Transepithelial capacitance decrease reveals closure of lateral interspace in A6 epithelia.

W. Van Driessche; Rita Vos; Danny Jans; Patrick De Smet; Gert Raskin

Abstract A sine wave method was used to measure transepithelial capacitance (CT) at 4.1 kHz (CHFT ). Model calculations show that CHFT reflects the equivalent capacitance of the series arrangement of apical and basolateral membrane capacitance. Cell swelling induced by reducing the basolateral osmolality from 260 to 140 mosmol/kg H2O (NaCl or sucrose removal) transiently decreased CHFT . The decrease in CHFT (ΔCHFT ) reached its maximum 30 s after the onset of cell swelling and a complete recovery of CHFT was attained within 3–4 min. ΔCHFT could be diminished by manoeuvres that reduced the rate or amplitude of cell swelling, i.e. lowering the temperature or treatment with low concentrations of glutaraldehyde (0.025%). ΔCHFT increased with the magnitude of the osmotic perturbation but saturated at large volume expansions. ΔCHFT increased with culture time. Electron micrographs showed a clear correlation between time course of CHFT changes and the closure of the lateral interspace (LIS). A striking correlation between the occurrence of CHFT recovery and the ability of the cells to develop a regulatory volume decrease (RVD) was found: Gd3+ (0.5 mM) inhibited both phenomena. The frequency dependence of CT was obtained from impedance spectra recorded over the range of 4 Hz to 22 kHz. These data agree with model calculations in which the contribution of the access resistance to the lateral membrane was included. All observations are consistent with the idea that ΔCHFT originates from the closure of the LIS during cell swelling. The latter phenomenon increases the access resistance to the lateral membrane, which results in a marked reduction of the basolateral membrane area detected at high frequencies with capacitance measurements.


Astronomy and Astrophysics | 2015

Detecting non-uniform period spacings in the Kepler photometry of γ Doradus stars: methodology and case studies⋆⋆⋆

T. Van Reeth; A. Tkachenko; Conny Aerts; P. I. Pápics; P. Degroote; J. Debosscher; Konstanze Zwintz; S. Bloemen; K. De Smedt; M. Hrudkova; Gert Raskin; H. Van Winckel

Context. The analysis of stellar oscillations is one of the most reliable ways to probe stellar interiors. Recent space missions such as Kepler have provided us with an opportunity to study these oscillations with unprecedented detail. For many multi-periodic pulsators such as {\gamma} Doradus stars, this led to the detection of dozens to hundreds of oscillation frequencies that could not be found from ground-based observations. Aims. We aim to detect non-uniform period spacings in the Fourier spectra of a sample of {\gamma} Doradus stars observed by Kepler. Such detection is complicated by both the large number of significant frequencies in the space photometry and by overlapping non-equidistant rotationally split multiplets. Methods. Guided by theoretical properties of gravity-mode oscillation of {\gamma} Doradus stars, we developed a period-spacing detection method and applied it to Kepler observations of a few stars, after having tested the performance from simulations. Results. The application of the technique resulted in the clear detection of non-uniform period spacing series for three out of the five treated Kepler targets. Disadvantages of the technique are also discussed, and include the disability to distinguish between different values of the spherical degree and azimuthal order of the oscillation modes without additional theoretical modelling. Conclusions. Despite the shortcomings, the method is shown to allow solid detections of period spacings for {\gamma} Doradus stars, which will allow future asteroseismic analyses of these stars.

Collaboration


Dive into the Gert Raskin's collaboration.

Top Co-Authors

Avatar

H. Van Winckel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Hans Van Winckel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Pessemier

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Conny Aerts

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

S. Prins

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

S. Bloemen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

C. Waelkens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

B. Vandenbussche

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

P. Degroote

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Y. Frémat

Royal Observatory of Belgium

View shared research outputs
Researchain Logo
Decentralizing Knowledge