Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gert Schaart is active.

Publication


Featured researches published by Gert Schaart.


Diabetes | 2010

Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity.

Ruth C. R. Meex; Vera B. Schrauwen-Hinderling; Esther Moonen-Kornips; Gert Schaart; Marco Mensink; Esther Phielix; Tineke van de Weijer; Jean-Pierre Sels; Patrick Schrauwen; Matthijs K. C. Hesselink

OBJECTIVE Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.


European Respiratory Journal | 2003

Myopathological features in skeletal muscle of patients with chronic obstructive pulmonary disease

Harry R. Gosker; B. Kubat; Gert Schaart; G.J. van der Vusse; Emiel F.M. Wouters; Annemie M. W. J. Schols

Despite the fact that muscle weakness is a major problem in chronic obstructive pulmonary disease (COPD), detailed information on myopathological changes at the microscopic level in these patients is scarce, if indeed available at all. Vastus lateralis biopsies of 15 COPD weight-stable patients (body mass index (BMI) 23.9±1.0 kg·m−2; fat-free mass index (FFMI) 17.2±1.7 kg·m−2) and 16 healthy age-matched controls (BMI 26.3±0.8 kg·m−2; FFMI 19.6±2.2 kg·m−2) were evaluated. Histochemistry was used to evaluate myopathological features. Immunohistochemistry was used for the detection of macrophages and leukocytes, and active caspase 3 and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) as markers of apoptosis. Fatty cell replacement and fibrosis were observed in both groups, the latter being slightly, but significantly, more pronounced in COPD. No differences between COPD and controls were found with respect to central nuclei, necrosis, regeneration, or fibre splitting. Signs of mitochondrial abnormalities were absent and normal numbers of inflammatory cells were found. Active caspase 3 positive myocytes were not observed and no difference was found in the number of TUNEL-positive myonuclei between controls and COPD patients (1.1% versus 1.0%, respectively). The cross-sectional area of type-IIX muscle fibres was smaller in COPD than in controls (2,566 versus 4,248 µm2). Except for the I to IIX shift in fibre types, the selective type-IIX atrophy and a slight accompanying increase in fibrosis and fat cell replacement in chronic obstructive pulmonary disease relative to age-matched controls, no other morphological abnormalities were observed in the muscle biopsies of chronic obstructive pulmonary disease patients. Also, in this group of clinically and weight stable chronic obstructive pulmonary disease patients, apoptosis appeared not to be involved in muscle pathology.


Nature Medicine | 2013

Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

Estelle Woldt; Yasmine Sebti; Laura A. Solt; Christian Duhem; Steve Lancel; Jérôme Eeckhoute; Matthijs K. C. Hesselink; Charlotte Paquet; Stéphane Delhaye; Youseung Shin; Theodore M. Kamenecka; Gert Schaart; Philippe Lefebvre; Remi Neviere; Thomas P. Burris; Patrick Schrauwen; Bart Staels; Hélène Duez

The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and that its deficiency in muscle leads to reduced mitochondrial content and oxidative function, as well as upregulation of autophagy. These cellular effects resulted in both impaired mitochondrial biogenesis and increased clearance of this organelle, leading to compromised exercise capacity. On a molecular level, Rev-erb-α deficiency resulted in deactivation of the Lkb1-Ampk-Sirt1–Ppargc-1α signaling pathway. These effects were recapitulated in isolated fibers and in muscle cells after knockdown of the gene encoding Rev-erb-α, Nr1d1. In complementary experiments, Rev-erb-α overexpression in vitro increased the number of mitochondria and improved respiratory capacity, whereas muscle overexpression or pharmacological activation of Rev-erb-α in vivo increased exercise capacity. This study identifies Rev-erb-α as a pharmacological target that improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function.


Nature Medicine | 2015

Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus

Mark J. W. Hanssen; Joris Hoeks; Boudewijn Brans; Anouk A.J.J. van der Lans; Gert Schaart; José J van den Driessche; Johanna A. Jörgensen; Mark V. Boekschoten; Matthijs K. C. Hesselink; Bas Havekes; Sander Kersten; Felix M. Mottaghy; Wouter D. van Marken Lichtenbelt; Patrick Schrauwen

Cold exposure may be a potential therapy for diabetes by increasing brown adipose tissue (BAT) mass and activity. Here we report that 10 d of cold acclimation (14–15 °C) increased peripheral insulin sensitivity by ∼43% in eight type 2 diabetes subjects. Basal skeletal muscle GLUT4 translocation markedly increased, without effects on insulin signaling or AMP-activated protein kinase (AMPK) activation and only a minor increase in BAT glucose uptake.


International Journal of Obesity | 2007

Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1α and PPARβ/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus

Marco Mensink; M.K. Hesselink; Aaron P. Russell; Gert Schaart; J.P.J.E. Sels; Patrick Schrauwen

Objective:To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.Design:Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.Subjects:Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.Methods:Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.Results:Skeletal-muscle mRNA of PGC-1α and PPARβ/δ – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (P<0.01). Rosiglitazone significantly increased PGC-1α (∼2.2-fold, P<0.01) and PPARβ/δ (∼2.6-fold, P<0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (P<0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.Conclusion:These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1α and PPARβ/δ, independent of mitochondrial protein content and/or changes in intramyocellular lipid.


Cell Metabolism | 2015

The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity

Evie P.M. Broeders; Emmani B. M. Nascimento; Bas Havekes; Boudewijn Brans; Kay H.M. Roumans; Anne Tailleux; Gert Schaart; Mostafa Kouach; Julie Charton; Benoit Deprez; Nicole D. Bouvy; Felix M. Mottaghy; Bart Staels; Wouter D. van Marken Lichtenbelt; Patrick Schrauwen

The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans.


Diabetes | 2012

Perilipin 2 Improves Insulin Sensitivity in Skeletal Muscle Despite Elevated Intramuscular Lipid Levels

Madeleen Bosma; Matthijs K. C. Hesselink; Lauren M. Sparks; Silvie Timmers; Maria J. Ferraz; Frits Mattijssen; Denis van Beurden; Gert Schaart; Marc H. De Baets; Fons Verheyen; Sander Kersten; Patrick Schrauwen

Type 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid (IMCL) storage exceeds intracellular needs and induces lipotoxic events, ultimately contributing to the development of insulin resistance. Lipid droplet (LD)–coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/adipose differentiation–related protein [ADRP]) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol (TAG) storage, marginally increased fatty-acid (FA) oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet–induced increase in protein content of the subunits of the oxidative phosphorylation (OXPHOS) chain. Diacylglycerol levels were unchanged, whereas ceramide levels were increased. Despite the increased IMCL accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs toward TAG storage in LDs, thereby blunting lipotoxicity-associated insulin resistance.


Cardiovascular Pathology | 1995

Chronic Ischemic Viable Myocardium in Man - Aspects of Dedifferentiation

Jannie Ausma; Gert Schaart; Fred Thoné; Bharati Shivalkar; Willem Flameng; Christophe Depre; Jean-Louis Vanoverschelde; Frans C. S. Ramaekers; Marcel Borgers

Histologic analysis of biopsies derived from patients with chronic dysfunctional but viable (hibernating) myocardium showed characteristic cell alterations. These changes consisted of a partial to complete loss of sarcomeres, accumulation of glycogen, and disorganization and loss of sarcoplasmic reticulum. Most of the adaptive changes that these affected cells undergo are suggestive of dedifferentiation. In the present study the expression and organizational pattern of contractile and cytoskeletal proteins such as titin, cardiotin, and α-smooth muscle actin were assessed in hibernating and normal myocardium because the expression and organization of these constituents have been related to certain stages of cardiomyocyte differentiation. In normal cells titin shows a cross-striated staining pattern, whereas cardiotin displays a fibrillar array, parallel to the sarcomeres. α-Smooth muscle actin is not expressed in adult cardiomyocytes. The expression of titin in a punctated pattern and the marked decrease to virtual absence of cardiotin in hibernating cardiomyocytes speak in favor of an embryonic phenotype of these cells. The re-expression of α-smooth muscle actin in hibernating cells strongly supports this hypothesis. The observations on three different structural proteins of heart muscle suggest that hibernating myocardium acquired aspects of muscle cell dedifferentiation.


Journal of Clinical Investigation | 2003

Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo.

Matthijs K. C. Hesselink; Paul L. Greenhaff; Dimitru Constantin-Teodosiu; Eric Hultman; Wim H. M. Saris; Robby Nieuwlaat; Gert Schaart; Esther Kornips; Patrick Schrauwen

Phosphocreatine (PCr) resynthesis rate following intense anoxic contraction can be used as a sensitive index of in vivo mitochondrial function. We examined the effect of a diet-induced increase in uncoupling protein 3 (UCP3) expression on postexercise PCr resynthesis in skeletal muscle. Nine healthy male volunteers undertook 20 one-legged maximal voluntary contractions with limb blood flow occluded to deplete muscle PCr stores. Exercise was performed following 7 days consumption of low-fat (LF) or high-fat (HF) diets. Immediately following exercise, blood flow was reinstated, and muscle was sampled after 20, 60, and 120 seconds of recovery. Mitochondrial coupling was assessed by determining the rate of PCr resynthesis during recovery. The HF diet increased UCP3 protein content by approximately 44% compared with the LF diet. However, this HF diet-induced increase in UCP3 expression was not associated with any changes in the rate of muscle PCr resynthesis during conditions of maximal flux through oxidative phosphorylation. Muscle acetylcarnitine, free-creatine, and lactate concentrations during recovery were unaffected by the HF diet. Taken together, our findings demonstrate that increasing muscle UCP3 expression does not diminish the rate of PCr resynthesis, allowing us to conclude that the primary role of UCP3 in humans is not uncoupling.


The Journal of Clinical Endocrinology and Metabolism | 2011

Three weeks on a high-fat diet increases intrahepatic lipid accumulation and decreases metabolic flexibility in healthy overweight men

N.A. van Herpen; Vera B. Schrauwen-Hinderling; Gert Schaart; Ronald P. Mensink; P. Schrauwen

CONTEXT In rodents, high-fat diets increase intrahepatic lipid (IHL), but human studies are scarce. OBJECTIVE Our objective was to examine whether high-fat diets influence IHL, intramyocellular lipids (IMCL), and insulin resistance. DESIGN Twenty overweight men were randomly allocated to low- or high-fat groups (age, 54.0 ± 2.3 and 56.4 ± 2.5 yr; body mass index, 29.3 ± 0.6 and 28.3 ± 0.5 kg/m(2), respectively). Both groups started with a 3-wk low-fat diet [15% energy (En%) as protein, 65 En% as carbohydrates, 20 En% as fat], after which half of the subjects switched to a 3-wk isocaloric high-fat diet (15 En% protein, 30 En% carbohydrates, 55 En% fat). After 3 and 6 wk, IHL and IMCL content were assessed by (1)H magnetic resonance spectroscopy and a muscle biopsy, and insulin sensitivity was studied using a hyperinsulinemic-euglycemic clamp. An additional liver scan was performed after 1 wk in the high-fat group. RESULTS IHL decreased by 13% in the low-fat group and increased by 17% in high-fat group (P = 0.047). IMCL content was unaffected (P = 0.304). Insulin sensitivity was unaffected. At wk 3, IHL correlated negatively with insulin sensitivity (r = -0.584; P = 0.009, all subjects combined). Metabolic flexibility, defined as change in respiratory quotient upon insulin stimulation, was decreased after 3 wk of the high-fat diet (change in respiratory quotient was +0.02 ± 0.02 vs. -0.05 ± 0.1 in low-fat vs. high-fat group, P = 0.009). Basal plasma glucose increased after the high-fat diet (P = 0.038). Plasma parameters insulin, free fatty acids, high-sensitivity C-reactive protein, and liver enzymes and body weight were unaffected by diet. CONCLUSION A 3-wk high-fat diet leads to IHL accumulation and a decreased metabolic flexibility, but insulin sensitivity is unaffected.

Collaboration


Dive into the Gert Schaart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim H. M. Saris

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Lauren M. Sparks

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge