Gertrud Lund
CINVESTAV
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gertrud Lund.
The Plant Cell | 2004
Massimiliano Lauria; Mary Rupe; Mei Guo; Erhard Kranz; Raul Pirona; Angelo Viotti; Gertrud Lund
A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.
BMC Medical Genomics | 2015
María del Pilar Valencia-Morales; Silvio Zaina; Holger Heyn; F. Javier Carmona; Nuray Varol; Sergi Sayols; Enric Condom; José Ramírez-Ruz; Antonio Gomez; Sebastian Moran; Gertrud Lund; Dalia Rodríguez-Ríos; Gladys López-González; Magda Ramírez-Nava; Carmen de la Rocha; Alejandro Sanchez-Flores; Manel Esteller
BackgroundAtherosclerosis severity-independent alterations in DNA methylation, a reversible and highly regulated DNA modification, have been detected in aortic atheromas, thus supporting the hypothesis that epigenetic mechanisms participate in the pathogenesis of atherosclerosis. One yet unaddressed issue is whether the progression of atherosclerosis is associated with an increase in DNA methylation drift in the vascular tissue. The purpose of the study was to identify CpG methylation profiles that vary with the progression of atherosclerosis in the human aorta.MethodsWe interrogated a set of donor-matched atherosclerotic and normal aortic samples ranging from histological grade III to VII, with a high-density (>450,000 CpG sites) DNA methylation microarray.ResultsWe detected a correlation between histological grade and intra-pair differential methylation for 1,985 autosomal CpGs, the vast majority of which drifted towards hypermethylation with lesion progression. The identified CpG loci map to genes that are regulated by known critical transcription factors involved in atherosclerosis and participate in inflammatory and immune responses. Functional relevance was corroborated by crossing the DNA methylation profiles with expression data obtained in the same human aorta sample set, by a transcriptome-wide analysis of murine atherosclerotic aortas and from available public databases.ConclusionsOur work identifies for the first time atherosclerosis progression-specific DNA methylation profiles in the vascular tissue. These findings provide potential novel markers of lesion severity and targets to counteract the progression of the atheroma.
Current Atherosclerosis Reports | 2011
Gertrud Lund; Silvio Zaina
Increasing evidence points to dietary lipids and their derivates as dynamic modulators of pro- or anti-inflammatory gene expression pathways via their ability to interact with nuclear receptors that are central to the regulation of numerous biological functions, including lipid metabolism, inflammatory mediator production, and vascular homeostasis. The biological effects of these receptors are the result of a finely tuned equilibrium between gene activation and repression, resulting from their ability to switch between chromatin-remodelling co-repressor and co-activator partners. The aim of this review is to discuss the concept that selected dietary components induce an atherosclerotic cellular phenotype, at least in part, by imposing epigenetic marks that shift the physiologic program of differential gene activation and repression. Aberrant epigenetic marks are seeded in promoter sequences as well as in intragenic sequences where they might regulate transcript splicing.
Current Opinion in Lipidology | 2005
Silvio Zaina; Kristina Døssing; Marie Lindholm; Gertrud Lund
Purpose of review This review examines recent evidence proposing that lipids and lipoproteins can act as nuclear factors regulating chromatin structure. These novel data broaden our understanding of the mechanisms by which lipoproteins can affect basic biological phenomena such as transcription, genome stability, and cell differentiation. Furthermore, they provide novel insights into the mechanisms of diseases associated with abnormal lipid levels, such as atherosclerosis and diabetes. Recent findings Data consistent with a role for lipids and lipoprotein components as nuclear factors, as well as initiators of cytoplasmic signalling events resulting in chromatin modification, have been published in the past year. In particular, new insights into the mechanisms of interaction between chromatin and small lipid molecules such as short-chain fatty acids and cholesterol, and endogenous lipid peroxidation products have been obtained. Furthermore, it has been shown that hyperlipidaemic lipoprotein profiles are associated with aberrant DNA methylation patterns at early stages of atherosclerosis in mice and in cultured human macrophages, suggesting that a rearrangement of DNA methylation patterns is among early molecular changes associated with atherogenesis. Summary The findings described here are prompting efforts to understand further how lipids and lipoprotein components can affect gene expression in normal and pathological cell behaviour through regulation of the chromatin structure. It is possible that novel candidate therapeutic tools will emerge from these studies.
BMC Genomics | 2011
Rubén Rangel-Salazar; Marie Wickström-Lindholm; Carlos A Aguilar-Salinas; Yolanda Alvarado-Caudillo; Kristina Døssing; Manel Esteller; Emmanuel Labourier; Gertrud Lund; Finn Cilius Nielsen; Dalia Rodríguez-Ríos; Martha Olivia Solís-Martínez; Katarzyna Wrobel; Kazimierz Wrobel; Silvio Zaina
BackgroundWe previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages.ResultsNative lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway.ConclusionsOur work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.
Current Genomics | 2010
Silvio Zaina; Elva L. Pérez-Luque; Gertrud Lund
Transcription is regulated by two major mechanisms. On the one hand, changes in DNA sequence are responsible for genetic gene regulation. On the other hand, chromatin structure regulates gene activity at the epigenetic level. Given the fundamental participation of these mechanisms in transcriptional regulation of virtually any gene, they are likely to co-regulate a significant proportion of the genome. The simple concept behind this idea is that a mutation may have a significant impact on local chromatin structure by modifying DNA methylation patterns or histone type recruitment. Yet, the relevance of these interactions is poorly understood. Elucidating how genetic and epigenetic mechanisms co-participate in regulating transcription may assist in some of the unresolved cases of genetic variant-phenotype association. One example is loci that have biologically predictable functions but genotypes that fail to correlate with phenotype, particularly disease outcome. Conversely, a crosstalk between genetics and epigenetics may provide a mechanistic explanation for cases in which a convincing association between phenotype and a genetic variant has been established, but the latter does not lie in a promoter or protein coding sequence. Here, we review recently published data in the field and discuss their implications for genetic variant-phenotype association studies.
Current Opinion in Lipidology | 2009
Gertrud Lund; Silvio Zaina
The interest in epigenetics is quickly growing among biomedical scientists, particularly those who study multifactorial, diet-related and environment-related disease such as cardiovascular disease (CVD) and other metabolic disorders [1]. The reason for epigenetics’ increasing popularity is that it can in principle explain mechanisms for pathological gene expression patterns. Transcription can be regulated in a generally irreversible and highly heritable fashion by genetic mechanisms such as mutations or polymorphisms. Epigenetics, on the other hand, explains how transcription of a given gene can be affected by the structure of the chromatin embedding the regulatory sequences of that gene. In general, a compact chromatin structure is not transcription permissive, whereas a relaxed one encompasses potentially transcribed genes [2]. DNA methylation, in addition to complex posttranslational modifications of histones, is a molecular landmark of different chromatin structures: compact chromatin is generally rich in hypermethylated DNA, whereas relaxed chromatin DNA is often hypomethylated or unmethylated. DNA methylation at a given locus changes dynamically during development and cell differentiation, although a degree of fidelity guarantees that DNA methylation patterns and consequently a chromatin-based transcriptional status is stably inherited during cell proliferation [3 ]. DNA methylation stability can also be hampered by stochastic variation or selected extrinsic stimuli [4]. By suggesting a scenario in which chromatin at selected loci relaxes and tightens up not only by the action of intrinsic developmental signals, but also as a consequence of diet and exposure to environmental factors, epigenetics provides appealing mechanisms of interaction between genes and external signals and, crucially, offers testable mechanisms of disease predisposition and progression [5]. Seminal work in animal models has provided proof of principle that simple dietary interventions induce transgenerationally inheritable changes in DNA methylation [6]. Other studies have consistently detected altered DNA methylation pattern during atherosclerosis in humans and
Scientific Reports | 2016
Carmen de la Rocha; J. Eduardo Pérez-Mojica; Silvia Leon; Braulio Cervantes-Paz; Fabiola E. Tristán-Flores; Dalia Rodríguez-Ríos; Jorge Molina-Torres; Enrique Ramírez-Chávez; Yolanda Alvarado-Caudillo; F. Javier Carmona; Manel Esteller; Rosaura Hernández-Rivas; Katarzyna Wrobel; Kazimierz Wrobel; Silvio Zaina; Gertrud Lund
Fatty acids (FA) modify DNA methylation in vitro, but limited information is available on whether corresponding associations exist in vivo and reflect any short-term effect of the diet. Associations between global DNA methylation and FAs were sought in blood from lactating infants (LI; n = 49) and adult males (AMM; n = 12) equally distributed across the three conventional BMI classes. AMM provided multiple samples at 2-hour intervals during 8 hours after either a single Western diet-representative meal (post-prandial samples) or no meal (fasting samples). Lipid/glucose profile, HDAC4 promoter and PDK4 5’UTR methylation were determined in AMM. Multiple regression analysis revealed that global (in LI) and both global and PDK4-specific DNA methylation (in AMM) were positively associated with eicosapentaenoic and arachidonic acid. HDAC4 methylation was inversely associated with arachidonic acid post-prandially in AMM. Global DNA methylation did not show any defined within-day pattern that would suggest a short-term response to the diet. Nonetheless, global DNA methylation was higher in normal weight subjects both post-prandially and in fasting and coincided with higher polyunsaturated relative to monounsaturated and saturated FAs. We show for the first time strong associations of DNA methylation with specific FAs in two human cohorts of distinct age, diet and postnatal development stage.
Epigenetics | 2016
Guillermo Antonio Silva-Martinez; Dalia Rodríguez-Ríos; Yolanda Alvarado-Caudillo; Alejandro Vaquero; Manel Esteller; F. Javier Carmona; Sebastian Moran; Finn Cilius Nielsen; Marie Wickström-Lindholm; Katarzyna Wrobel; Kazimierz Wrobel; Gloria Barbosa-Sabanero; Silvio Zaina; Gertrud Lund
ABSTRACT Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1–200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts.
Journal of Nutrigenetics and Nutrigenomics | 2011
Silvio Zaina; Gertrud Lund
Cardiovascular disease (CVD) is a leading cause of mortality and is projected to hold its grim record as developing countries increase their wealth. Since specific nutritional habits are important risk factors for CVD, it is imperative to understand how ingredients of risk-associated diets convert a healthy cellular transcriptional program into a pathological one. Epigenetics has enriched our view of the genome by showing that DNA-associated regulatory proteins and RNAs, together with chemical modifications of the DNA itself, determine which parts of the DNA chain are transcribed or silent in a given phase of a cell’s life. This complex biological entity – the epigenome – accounts for the enormous phenotypic diversity within a multicellular organism despite its unicellular origin. Crucially, the epigenome can be modified by diet and other exogenous factors, thus suggesting that epigenetic mechanisms might underlie pathological responses to CVD risk factors. Here, we will review the current knowledge of epigenetic mechanisms in diet-gene interactions and propose ways in which epigenetics might clarify the impact of genetic variants on CVD risk.