Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gertrud Wiedemann is active.

Publication


Featured researches published by Gertrud Wiedemann.


BMC Plant Biology | 2007

Evolutionary conservation of plant gibberellin signalling pathway components

Filip Vandenbussche; Ana Carolina Fierro; Gertrud Wiedemann; Ralf Reski; Dominique Van Der Straeten

Background:Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses.Results:Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies.Conclusion:Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth.


Journal of Biological Chemistry | 2007

The Putative Moss 3′-Phosphoadenosine-5′-phosphosulfate Reductase Is a Novel Form of Adenosine-5′-phosphosulfate Reductase without an Iron-Sulfur Cluster

Stanislav Kopriva; Kai Fritzemeier; Gertrud Wiedemann; Ralf Reski

Sulfate assimilation provides reduced sulfur for synthesis of the amino acids cysteine and methionine and for a range of other metabolites. Sulfate has to be activated prior to reduction by adenylation to adenosine 5′-phosphosulfate (APS). In plants, algae, and many bacteria, this compound is reduced to sulfite by APS reductase (APR); in fungi and some cyanobacteria and γ-proteobacteria, a second activation step, phosphorylation to 3′-phosphoadenosine 5′-phosphosulfate (PAPS), is necessary before reduction to sulfite by PAPS reductase (PAPR). We found previously that the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR genes (Koprivova, A., Meyer, A. J., Schween, G., Herschbach, C., Reski, R., and Kopriva, S. (2002) J. Biol. Chem. 277, 32195-32201). To assess the function of the two enzymes, we compared their biochemical properties by analysis of purified recombinant proteins. APR from Physcomitrella is very similar to the well characterized APRs from seed plants. On the other hand, we found that the putative PAPR preferentially reduces APS. Sequence analysis, analysis of UV-visible spectra, and determination of iron revealed that this new APR, named PpAPR-B, does not contain the FeS cluster, which was previously believed to determine the substrate specificity of the otherwise relatively similar enzymes. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. These findings show that APS reduction without the FeS cluster is possible and that plant sulfate assimilation is predominantly dependent on reduction of APS.


New Phytologist | 2015

Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation

Anna K. Beike; Daniel Lang; Andreas D. Zimmer; Florian Wüst; Danika Trautmann; Gertrud Wiedemann; Peter Beyer; Eva L. Decker; Ralf Reski

The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.


New Phytologist | 2011

PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway

Che C. Colpitts; Sung Soo Kim; Sarah E. Posehn; Christina Jepson; Sun Young Kim; Gertrud Wiedemann; Ralf Reski; Andrew G. H. Wee; Carl J. Douglas; Dae-Yeon Suh

Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants.


Nature Communications | 2017

A phenol-enriched cuticle is ancestral to lignin evolution in land plants

Hugues Renault; Annette Alber; Nelly A. Horst; Alexandra Basilio Lopes; Eric A. Fich; Lucie Kriegshauser; Gertrud Wiedemann; Pascaline Ullmann; Laurence Herrgott; Mathieu Erhardt; Emmanuelle Pineau; Jürgen Ehlting; Martine Schmitt; Jocelyn K. C. Rose; Ralf Reski; Danièle Werck-Reichhart

Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.


Plant Molecular Biology | 2007

The role of the novel adenosine 5′-phosphosulfate reductase in regulation of sulfate assimilation of Physcomitrella patens

Gertrud Wiedemann; Anna Koprivova; Melanie Schneider; Cornelia Herschbach; Ralf Reski; Stanislav Kopriva

Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.


FEBS Letters | 2010

Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development

Gertrud Wiedemann; Corinna Hermsen; Michael Melzer; Annette Büttner-Mainik; Heinz Rennenberg; Ralf Reski; Stanislav Kopriva

A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the ΔSiR1 mutants. While ΔSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized.


Journal of Biological Chemistry | 2013

Physcomitrella PpORS, Basal to Plant Type III Polyketide Synthases in Phylogenetic Trees, Is a Very Long Chain 2′-Oxoalkylresorcinol Synthase

Sun Young Kim; Che C. Colpitts; Gertrud Wiedemann; Christina Jepson; Mehrieh Rahimi; Jordan R. Rothwell; Adam D. McInnes; Mitsuyasu Hasebe; Ralf Reski; Brian T. Sterenberg; Dae-Yeon Suh

Background: Physcomitrella PpORS is an ancient member of the plant type III polyketide synthase (PKS) family. Results: PpORS, produced in nonprotonemal moss cells, synthesizes pentaketide 2′-oxoalkylresorcinols using a unique substrate binding site. Conclusion: PpORS is a novel very long chain 2′-oxoalkylresorcinol synthase. Significance: This is the first step toward understanding the co-evolution of the type III PKS family and land plants. The plant type III polyketide synthases (PKSs), which produce diverse secondary metabolites with different biological activities, have successfully co-evolved with land plants. To gain insight into the roles that ancestral type III PKSs played during the early evolution of land plants, we cloned and characterized PpORS from the moss Physcomitrella. PpORS has been proposed to closely resemble the most recent common ancestor of the plant type III PKSs. PpORS condenses a very long chain fatty acyl-CoA with four molecules of malonyl-CoA and catalyzes decarboxylative aldol cyclization to yield the pentaketide 2′-oxoalkylresorcinol. Therefore, PpORS is a 2′-oxoalkylresorcinol synthase. Structure modeling and sequence alignments identified a unique set of amino acid residues (Gln218, Val277, and Ala286) at the putative PpORS active site. Substitution of the Ala286 to Phe apparently constricted the active site cavity, and the A286F mutant instead produced triketide alkylpyrones from fatty acyl-CoA substrates with shorter chain lengths. Phylogenetic analysis and comparison of the active sites of PpORS and alkylresorcinol synthases from sorghum and rice suggested that the gramineous enzymes evolved independently from PpORS to have similar functions but with distinct active site architecture. Microarray analysis revealed that PpORS is exclusively expressed in nonprotonemal moss cells. The in planta function of PpORS, therefore, is probably related to a nonprotonemal structure, such as the cuticle.


Methods of Molecular Biology | 2015

Gene Targeting for Precision Glyco-Engineering: Production of Biopharmaceuticals Devoid of Plant-Typical Glycosylation in Moss Bioreactors.

Eva L. Decker; Gertrud Wiedemann; Ralf Reski

One of the main challenges for the production of biopharmaceuticals in plant-based systems is the modulation of plant-specific glycosylation patterns towards a humanized form. Posttranslational modifications in plants are similar to those in humans, but several differences affect product quality and efficacy and can also cause immune responses in patients. In the moss Physcomitrella patens highly efficient gene targeting via homologous recombination enables glyco-engineering to obtain suitable platform lines for the production of recombinant proteins and biopharmaceuticals. Here we describe the methods which are effective for creating gene targeting constructs and transgenic moss lines as well as confirming successful homologous integration of the constructs and modification of target gene expression.


The Plant Cell | 2018

RecQ Helicases Function in Development, DNA Repair, and Gene Targeting in Physcomitrella patens

Gertrud Wiedemann; Nico van Gessel; Fabian Köchl; Lisa Hunn; Katrin Schulze; Lina Maloukh; Fabien Nogué; Eva L. Decker; Frank Hartung; Ralf Reski

RecQ DNA helicases are important genome surveillance proteins that are found in meristematic tissues, where they function in plant development, DNA repair, and gene targeting in the moss Physcomitrella patens. RecQ DNA helicases are genome surveillance proteins found in all kingdoms of life. They are characterized best in humans, as mutations in RecQ genes lead to developmental abnormalities and diseases. To better understand RecQ functions in plants we concentrated on Arabidopsis thaliana and Physcomitrella patens, the model species predominantly used for studies on DNA repair and gene targeting. Phylogenetic analysis of the six P. patens RecQ genes revealed their orthologs in humans and plants. Because Arabidopsis and P. patens differ in their RecQ4 and RecQ6 genes, reporter and deletion moss mutants were generated and gene functions studied in reciprocal cross-species and cross-kingdom approaches. Both proteins can be found in meristematic moss tissues, although at low levels and with distinct expression patterns. PpRecQ4 is involved in embryogenesis and in subsequent development as demonstrated by sterility of ΔPpRecQ4 mutants and by morphological aberrations. Additionally, ΔPpRecQ4 displays an increased sensitivity to DNA damages and an increased rate of gene targeting. Therefore, we conclude that PpRecQ4 acts as a repressor of recombination. In contrast, PpRecQ6 is not obviously important for moss development or DNA repair but does function as a potent enhancer of gene targeting.

Collaboration


Dive into the Gertrud Wiedemann's collaboration.

Top Co-Authors

Avatar

Ralf Reski

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Lang

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge