Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gerty Schreibelt is active.

Publication


Featured researches published by Gerty Schreibelt.


Biochimica et Biophysica Acta | 2011

Radical changes in multiple sclerosis pathogenesis

Jack van Horssen; Maarten E. Witte; Gerty Schreibelt; Helga E. de Vries

Reactive oxygen species (ROS) contain one or more unpaired electrons and are formed as intermediates in a variety of normal biochemical reactions. However, when generated in excess amounts or not appropriately controlled, ROS initiate extensive cellular damage and tissue injury. ROS have been implicated in the progression of cancer, cardiovascular disease and neurodegenerative and neuroinflammatory disorders, such as multiple sclerosis (MS). In the last decade there has been a major interest in the involvement of ROS in MS pathogenesis and evidence is emerging that free radicals play a key role in various processes underlying MS pathology. To counteract ROS-mediated damage, the central nervous system is equipped with an intrinsic defense mechanism consisting of endogenous antioxidant enzymes. Here, we provide a comprehensive overview on the (sub)cellular origin of ROS during neuroinflammation as well as the detrimental effects of ROS in processing underlying MS lesion development and persistence. In addition, we will discuss clinical and experimental studies highlighting the therapeutic potential of antioxidant protection in the pathogenesis of MS.


Cancer Immunology, Immunotherapy | 2010

Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy

Gerty Schreibelt; Jurjen Tel; Kwinten H. E. W. J. Sliepen; Daniel Benitez-Ribas; Carl G. Figdor; Gosse J. Adema; I. Jolanda M. de Vries

Dendritic cells (DCs) are central players of the immune response. To date, DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients, predominantly with ex vivo-cultured monocyte-derived DCs (moDCs). However, the extensive culture period and compounds required to differentiate them into DCs may negatively affect their immunological potential. Therefore, it is attractive to consider alternative DC sources, such as blood DCs. Two major types of naturally occurring DCs circulate in peripheral blood, myeloid DCs (mDCs) and plasmacytoid (pDCs). These DC subsets express different surface molecules and are suggested to have distinct functions. Besides scavenging pathogens and presenting antigens, DCs secrete cytokines, all of which is vital for both the acquired and the innate immune system. These immunological functions relate to Toll-like receptors (TLRs) expressed by DCs. TLRs recognize pathogen-derived products and subsequently provoke DC maturation, antigen presentation and cytokine secretion. However, not every TLR is expressed on each DC subset nor causes the same effects when activated. Considering the large amount of clinical trials using DC-based immunotherapy for cancer patients and the decisive role of TLRs in DC maturation, this review summarizes TLR expression in different DC subsets in relation to their function. Emphasis will be given to the therapeutic potential of TLR-matured DC subsets for DC-based immunotherapy.


Cancer Research | 2013

Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients

Jurjen Tel; Ehjg Aarntzen; T Baba; Gerty Schreibelt; Barbara M. Schulte; Daniel Benitez-Ribas; Otto C. Boerman; Sandra Croockewit; Wim J.G. Oyen; M.A. van Rossum; Gregor Winkels; Pierre Coulie; Cornelis J. A. Punt; Carl G. Figdor; J. de Vries

Vaccination against cancer by using dendritic cells has for more than a decade been based on dendritic cells generated ex vivo from monocytes or CD34(+) progenitors. Here, we report on the first clinical study of therapeutic vaccination against cancer using naturally occurring plasmacytoid dendritic cells (pDC). Fifteen patients with metastatic melanoma received intranodal injections of pDCs activated and loaded with tumor antigen-associated peptides ex vivo. In vivo imaging showed that administered pDCs migrated and distributed over multiple lymph nodes. Several patients mounted antivaccine CD4(+) and CD8(+) T-cell responses. Despite the limited number of administered pDCs, an IFN signature was observed after each vaccination. These results indicate that vaccination with naturally occurring pDC is feasible with minimal toxicity and that in patients with metastatic melanoma, it induces favorable immune responses.


Blood | 2012

The C type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells

Gerty Schreibelt; Lieke J. J. Klinkenberg; Luis J. Cruz; Paul J. Tacken; Jurjen Tel; Martin Kreutz; Gosse J. Adema; Gordon D. Brown; Carl G. Figdor; I. Jolanda M. de Vries

CLEC9A is a recently discovered C-type lectin receptor involved in sensing necrotic cells. In humans, this receptor is selectively expressed by BDCA3(+) myeloid dendritic cells (mDCs), which have been proposed to be the main human cross-presenting mDCs and may represent the human homologue of murine CD8(+) DCs. In mice, it was demonstrated that antigens delivered with antibodies to CLEC9A are presented by CD8(+) DCs to both CD4(+) and CD8(+) T cells and induce antitumor immunity in a melanoma model. Here we assessed the ability of CLEC9A to mediate antigen presentation by human BDCA3(+) mDCs, which represent < 0.05% of peripheral blood leukocytes. We demonstrate that CLEC9A is only expressed on immature BDCA3(+) mDCs and that cell surface expression is lost after TLR-mediated maturation. CLEC9A triggering via antibody binding rapidly induces receptor internalization but does not affect TLR-induced cytokine production or expression of costimulatory molecules. More importantly, antigens delivered via CLEC9A antibodies to BDCA3(+) mDCs are presented by both MHC class I (cross-presentation) and MHC class II to antigen-specific T cells. We conclude that CLEC9A is a promising target for in vivo antigen delivery in humans to increase the efficiency of vaccines against infectious or malignant diseases.


Cancer Immunology, Immunotherapy | 2008

Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration

A. C. Inge Boullart; Erik H.J.G. Aarntzen; Pauline Verdijk; Joannes F.M. Jacobs; Danita H. Schuurhuis; Daniel Benitez-Ribas; Gerty Schreibelt; Mandy W.M.M. van de Rakt; Nicole M. Scharenborg; Annemiek de Boer; Matthijs Kramer; Carl G. Figdor; Cornelis J. A. Punt; Gosse J. Adema; I. Jolanda M. de Vries

Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.


Journal of Clinical Investigation | 2011

Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice

W. Joost Lesterhuis; Cornelis J. A. Punt; Stanleyson V. Hato; Dagmar Eleveld-Trancikova; Bastiaan J.H. Jansen; Stefan Nierkens; Gerty Schreibelt; Annemiek J. de Boer; Carla M.L. van Herpen; Johannes H.A.M. Kaanders; Johan H. J. M. van Krieken; Gosse J. Adema; Carl G. Figdor; I. Jolanda M. de Vries

Tumor microenvironments feature immune inhibitory mechanisms that prevent T cells from generating effective antitumor immune responses. Therapeutic interventions aimed at disrupting these inhibitory mechanisms have been shown to enhance antitumor immunity, but they lack direct cytotoxic effects. Here, we investigated the effect of cytotoxic cancer chemotherapeutics on immune inhibitory pathways. We observed that exposure to platinum-based chemotherapeutics markedly reduced expression of the T cell inhibitory molecule programmed death receptor-ligand 2 (PD-L2) on both human DCs and human tumor cells. Downregulation of PD-L2 resulted in enhanced antigen-specific proliferation and Th1 cytokine secretion as well as enhanced recognition of tumor cells by T cells. Further analysis revealed that STAT6 controlled downregulation of PD-L2. Consistent with these data, patients with STAT6-expressing head and neck cancer displayed enhanced recurrence-free survival upon treatment with cisplatin-based chemoradiation compared with patients with STAT6-negative tumors, demonstrating the clinical relevance of platinum-induced STAT6 modulation. We therefore conclude that platinum-based anticancer drugs can enhance the immunostimulatory potential of DCs and decrease the immunosuppressive capability of tumor cells. This dual action of platinum compounds may extend their therapeutic application in cancer patients and provides a rationale for their use in combination with immunostimulatory compounds.


Clinical Cancer Research | 2011

Route of Administration Modulates the Induction of Dendritic Cell Vaccine–Induced Antigen-Specific T Cells in Advanced Melanoma Patients

W. Joost Lesterhuis; I. Jolanda M. de Vries; Gerty Schreibelt; Annechien Lambeck; Erik H.J.G. Aarntzen; Joannes F.M. Jacobs; Nicole M. Scharenborg; Mandy W.M.M. van de Rakt; Annemiek J. de Boer; Sandra Croockewit; Michelle M. van Rossum; Roel Mus; Wim J.G. Oyen; Otto C. Boerman; Sophie Lucas; Gosse J. Adema; Cornelis J. A. Punt; Carl G. Figdor

Purpose: It is unknown whether the route of administration influences dendritic cell (DC)-based immunotherapy. We compared the effect of intradermal versus intranodal administration of a DC vaccine on induction of immunologic responses in melanoma patients and examined whether concomitant administration of interleukin (IL)-2 increases the efficacy of the DC vaccine. Experimental Design: HLA-A2.1+ melanoma patients scheduled for regional lymph node dissection were vaccinated four times biweekly via intradermal or intranodal injection with 12 × 106 to 17 × 106 mature DCs loaded with tyrosinase and gp100 peptides together with keyhole limpet hemocyanin (KLH). Half of the patients also received low-dose IL-2 (9 MIU daily for 7 days starting 3 days after each vaccination). KLH-specific B- and T-cell responses were monitored in blood. gp100- and tyrosinase-specific T-cell responses were monitored in blood by tetramer analysis and in biopsies from delayed-type hypersensitivity (DTH) skin tests by tetramer and functional analyses with 51Cr release assays or IFNγ release, following coculture with peptide-pulsed T2 cells or gp100- or tyrosinase-expressing tumor cells. Results: In 19 of 43 vaccinated patients, functional tumor antigen–specific T cells could be detected. Although significantly more DCs migrated to adjacent lymph nodes upon intranodal vaccination, this was also highly variable with a complete absence of migration in 7 of 24 intranodally vaccinated patients. Intradermal vaccinations proved superior in inducing functional tumor antigen–specific T cells. Coadministration of IL-2 did not further augment the antigen-specific T-cell response but did result in higher regulatory T-cell frequencies. Conclusion: Intradermal vaccination resulted in superior antitumor T-cell induction when compared with intranodal vaccination. No advantage of additional IL-2 treatment could be shown. Clin Cancer Res; 17(17); 5725–35. ©2011 AACR.


Cancer Research | 2013

Targeting CD4+ T-Helper Cells Improves the Induction of Antitumor Responses in Dendritic Cell―Based Vaccination

Erik H.J.G. Aarntzen; I. Jolanda M. de Vries; W. Joost Lesterhuis; Danita H. Schuurhuis; Joannes F.M. Jacobs; Kalijn F. Bol; Gerty Schreibelt; Roel Mus; Johannes H. W. de Wilt; John B. A. G. Haanen; Dirk Schadendorf; Alexandra J. Croockewit; W.A.M. Blokx; Michelle M. van Rossum; William W. Kwok; Gosse J. Adema; Cornelis J. A. Punt; Carl G. Figdor

To evaluate the relevance of directing antigen-specific CD4(+) T helper cells as part of effective anticancer immunotherapy, we investigated the immunologic and clinical responses to vaccination with dendritic cells (DC) pulsed with either MHC class I (MHC-I)-restricted epitopes alone or both MHC class I and II (MHC-I/II)-restricted epitopes. We enrolled 33 stage III and IV HLA-A*02:01-positive patients with melanoma in this study, of whom 29 were evaluable for immunologic response. Patients received intranodal vaccinations with cytokine-matured DCs loaded with keyhole limpet hemocyanin and MHC-I alone or MHC-I/II-restricted tumor-associated antigens (TAA) of tyrosinase and gp100, depending on their HLA-DR4 status. In 4 of 15 patients vaccinated with MHC-I/II-loaded DCs and 1 of 14 patients vaccinated with MHC-I-loaded DCs, we detected TAA-specific CD8(+) T cells with maintained IFN-γ production in skin test infiltrating lymphocyte (SKIL) cultures and circulating TAA-specific CD8(+) T cells. If TAA-specific CD4(+) T-cell responses were detected in SKIL cultures, it coincided with TAA-specific CD8(+) T-cell responses. In 3 of 13 patients tested, we detected TAA-specific CD4(+)CD25(+)FoxP3(-) T cells with high proliferative capacity and IFN-γ production, indicating that these were not regulatory T cells. Vaccination with MHC-I/II-loaded DCs resulted in improved clinical outcome compared with matched control patients treated with dacarbazine (DTIC), median overall survival of 15.0 versus 8.3 months (P = 0.089), and median progression-free survival of 5.0 versus 2.8 months (P = 0.0089). In conclusion, coactivating TAA-specific CD4(+) T-helper cells with DCs pulsed with both MHC class I and II-restricted epitopes augments TAA-specific CD8(+) T-cell responses, contributing to improved clinical responses.


Blood | 2013

Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets

Jurjen Tel; Gerty Schreibelt; Simone P. Sittig; Till S.M. Mathan; Sonja I. Buschow; Luis J. Cruz; A.J.A. Lambeck; Carl G. Figdor; I.J.M. de Vries

In human peripheral blood, 4 populations of dendritic cells (DCs) can be distinguished, plasmacytoid dendritic cells (pDCs) and CD16(+), CD1c(+), and BDCA-3(+) myeloid DCs (mDCs), each with distinct functional characteristics. DCs have the unique capacity to cross-present exogenously encountered antigens (Ags) to CD8(+) T cells. Here we studied the ability of all 4 blood DC subsets to take up, process, and present tumor Ags to T cells. Although pDCs take up less Ags than CD1c(+) and BDCA3(+) mDCs, pDCs induce potent Ag-specific CD4(+) and CD8(+) T-cell responses. We show that pDCs can preserve Ags for prolonged periods of time and on stimulation show strong induction of both MHC class I and II, which explains their efficient activation of both CD4(+) and CD8(+) T cells. Furthermore, pDCs cross-present soluble and cell-associated tumor Ags to cytotoxic T lymphocytes equally well as BDCA3(+) mDCs. These findings, and the fact that pDCs outnumber BDCA3(+) mDCs, both in peripheral blood and lymph nodes, together with their potent IFN-I production, known to activate both components of the innate and adaptive immune system, put human pDCs forward as potent activators of CD8(+) T cells in antitumor responses. Our findings may therefore have important consequences for the development of antitumor immunotherapy.


Journal of Immunology | 2013

Targeting Uptake Receptors on Human Plasmacytoid Dendritic Cells Triggers Antigen Cross-Presentation and Robust Type I IFN Secretion

Jurjen Tel; S.P. Sittig; R.A. Blom; Luis J. Cruz; Gerty Schreibelt; Carl G. Figdor; I.J.M. de Vries

Plasmacytoid dendritic cells (pDCs) play a crucial role in initiating immune responses by secreting large amounts of type I IFNs. Currently, the role for human pDCs as professional APCs in the cross-presentation of exogenous Ags is being re-evaluated. Human pDCs are equipped with a broad repertoire of Ag uptake receptors and an efficient Ag-processing machinery. In this study, we set out to investigate which receptor can best be deployed to deliver Ag to pDCs for Ag (cross-)presentation. We show that targeting nanoparticles to pDCs via the C-type lectins DEC-205, DC immunoreceptor, blood DC Ag-2, or the FcR CD32 led to uptake, processing, and (cross-) presentation of encapsulated Ag to both CD4+ and CD8+ T cells. This makes these receptors good candidates for potential in vivo targeting of pDCs by nanocarriers. Notably, the coencapsulated TLR7 agonist R848 efficiently activated pDCs, resulting in phenotypical maturation as well as robust IFN-α and TNF-α production. Taken together, their cross-presentation capacity and type I IFN production to further activate components of both the innate and adaptive immune system mark pDCs as inducers of potent antitumor responses. These findings pave the way to actively recruit human pDCs for cellular cancer immunotherapy.

Collaboration


Dive into the Gerty Schreibelt's collaboration.

Top Co-Authors

Avatar

Carl G. Figdor

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cornelis J. A. Punt

Radboud University Nijmegen Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kalijn F. Bol

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Gosse J. Adema

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harm Westdorp

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Jurjen Tel

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

W. Joost Lesterhuis

Radboud University Nijmegen Medical Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge