Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Géza R. Szilvay is active.

Publication


Featured researches published by Géza R. Szilvay.


Protein Science | 2006

Two crystal structures of Trichoderma reesei hydrophobin HFBI--The structure of a protein amphiphile with and without detergent interaction.

Johanna Hakanpää; Géza R. Szilvay; Heidi Kaljunen; Mirko Maksimainen; Markus B. Linder; Juha Rouvinen

Hydrophobins are small fungal proteins that are highly surface active and possess a unique ability to form amphiphilic membranes through spontaneous self‐assembly. The first crystal structure of a hydrophobin, Trichoderma reesei HFBII, revealed the structural basis for the function of this amphiphilic protein—a patch consisting of hydrophobic side chains on the protein surface. Here, the crystal structures of a native and a variant T. reesei hydrophobin HFBI are presented, revealing the same overall structure and functional hydrophobic patch as in the HFBII structure. However, some structural flexibility was found in the native HFBI structure: The asymmetric unit contained four molecules, and, in two of these, an area of seven residues was displaced as compared to the two other HFBI molecules and the previously determined HFBII structure. This structural change is most probably induced by multimer formation. Both the native and the N‐Cys‐variant of HFBI were crystallized in the presence of detergents, but an association between the protein and a detergent was only detected in the variant structure. There, the molecules were arranged into an extraordinary detergent‐associated octamer and the solvent content of the crystals was 75%. This study highlights the conservation of the fold of class II hydrophobins in spite of the low sequence identity and supports our previous suggestion that concealment of the hydrophobic surface areas of the protein is the driving force in the formation of multimers and monolayers in the self‐assembly process.


Protein Science | 2009

Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma reesei.

Markus B. Linder; Géza R. Szilvay; Tiina Nakari-Setälä; Hans Söderlund; Merja Penttilä

Hydrophobins are surface‐active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and as fusion proteins. Both hydrophobins were produced as C‐terminal fusions to the core of the hydrolytic enzyme endoglucanase I from the same organism. It was shown that as a fusion partner, HFBI causes the fusion protein to efficiently immobilize to hydrophobic surfaces, such as silanized glass and Teflon. The properties of the surface‐bound protein were analyzed by the enzymatic activity of the endoglucanase domain, by surface plasmon resonance (Biacore), and by a quartz crystal microbalance. We found that the HFBI fusion forms a tightly bound, rigid surface layer on a hydrophobic support. The HFBI domain also causes the fusion protein to polymerize in solution, possibly to a decamer. Although isolated HFBII binds efficiently to surfaces, it does not cause immobilization as a fusion partner, nor does it cause polymerization of the fusion protein in solution. The findings give new information on how hydrophobins function and how they can be used to immobilize fusion proteins.


Green Chemistry | 2016

A simple process for lignin nanoparticle preparation

Miikka Lievonen; Juan José Valle-Delgado; Maija Liisa Mattinen; Eva Lena Hult; Kalle Lintinen; Mauri A. Kostiainen; Arja Paananen; Géza R. Szilvay; Harri Setälä; Monika Österberg

A lack of renewable resources and their inefficient use is a major challenge facing the society. Lignin is a natural biopolymer obtained mainly as a by-product from the pulp- and paper-making industries, and is primarily burned to produce energy. However, interest for using lignin in more advanced applications has increased rapidly. In particular, lignin based nanoparticles could find potential use in functional surface coatings, nanoglue, drug delivery, and microfluidic devices. In this work, a straightforward method to produce lignin nanoparticles from waste lignin obtained from kraft pulping is introduced. Spherical lignin nanoparticles were obtained by dissolving softwood kraft lignin in tetrahydrofuran (THF) and subsequently introducing water into the system through dialysis. No chemical modification of lignin was needed. Water acts as a non-solvent reducing lignins degrees of freedom causing the segregation of hydrophobic regions to compartments within the forming nanoparticles. The final size of the nanoparticles depended on the pre-dialysis concentration of dissolved lignin. The stability of the nanoparticle dispersion as a function of time, salt concentration and pH was studied. In pure water and at room temperature the lignin nanoparticle dispersion was stable for over two months, but a very low pH or high salt concentration induced aggregation. It was further demonstrated that the surface charge of the particles could be reversed and stable cationic lignin nanoparticles were produced by adsorption of poly(diallyldimethylammonium chloride) (PDADMAC).


Langmuir | 2009

Self-assembled films of hydrophobin proteins HFBI and HFBII studied in situ at the air/water interface.

Kaisa Kisko; Géza R. Szilvay; Elina Vuorimaa; Helge Lemmetyinen; Markus B. Linder; Mika Torkkeli; Ritva Serimaa

Hydrophobins are a group of surface-active fungal proteins known to adsorb to the air/water interface and self-assemble into highly crystalline films. We characterized the self-assembled protein films of two hydrophobins, HFBI and HFBII from Trichoderma reesei, directly at the air/water interface using Brewster angle microscopy, grazing-incidence X-ray diffraction, and reflectivity. Already in zero surface pressure, HFBI and HFBII self-assembled into micrometer-sized rafts containing hexagonally ordered two-dimensional crystallites with lattice constants of 55 A and 56 A, respectively. Increasing the pressure did not change the ordering of the proteins in the crystallites. According to the reflectivity measurements, the thicknesses of the hydrophobin films were 28 A (HFBI) and 24 A (HFBII) at 20 mN/m. The stable films could also be transferred to a silicon substrate. Modeling of the diffraction data indicated that both hydrophobin films contained six molecules in the unit cell, but the ordering of the molecules was somewhat different for HFBI and HFBII, suggesting specific protein-protein interactions.


ACS Nano | 2007

Precisely Defined Protein-Polymer Conjugates: Construction of Synthetic DNA Binding Domains on Proteins by Using Multivalent Dendrons

Mauri A. Kostiainen; Géza R. Szilvay; Julia Lehtinen; David K. Smith; Markus B. Linder; Arto Urtti; Olli Ikkala

Nature has evolved proteins and enzymes to carry out a wide range of sophisticated tasks. Proteins modified with functional polymers possess many desirable physical and chemical properties and have applications in nanobiotechnology. Here we describe multivalent Newkome-type polyamine dendrons that function as synthetic DNA binding domains, which can be conjugated with proteins. These polyamine dendrons employ naturally occurring spermine surface groups to bind DNA with high affinity and are attached onto protein surfaces in a site-specific manner to yield well-defined one-to-one protein-polymer conjugates, where the number of dendrons and their attachment site on the protein surface are precisely known. This precise structure is achieved by using N-maleimido-core dendrons that selectively react via 1,4-conjugate addition with a single free thiol group on the protein surface--either Cys-34 of bovine serum albumin (BSA) or a genetically engineered cysteine mutant of Class II hydrophobin (HFBI). This reaction can be conducted in mild aqueous solutions (pH 7.2-7.4) and at ambient temperature, resulting in BSA- and HFBI-dendron conjugates. The protein-dendron conjugates constitute a specific biosynthetic diblock copolymer and bind DNA with high affinity, as shown by ethidium bromide displacement assay. Importantly, even the low-molecular-weight first-generation polyamine dendron (1 kDa) can bind a large BSA protein (66.4 kDa) to DNA with relatively good affinity. Preliminary gene transfection, cytotoxicity, and self-assembly studies establish the relevance of this methodology for in vitro applications, such as gene therapy and surface patterning. These results encourage further developments in protein-dendron block copolymer-like conjugates and will allow the advance of functional biomimetic nanoscale materials.


Journal of Molecular Biology | 2010

Calcium-induced folding of a beta roll motif requires C-terminal entropic stabilization.

Mark Blenner; Oren Shur; Géza R. Szilvay; Donald M. Cropek; Scott Banta

Beta roll motifs are associated with several proteins secreted by the type 1 secretion system (T1SS). Located just upstream of the C-terminal T1SS secretion signal, they are believed to act as calcium-induced switches that prevent folding before secretion. Bordetella pertussis adenylate cyclase (CyaA) toxin has five blocks of beta roll motifs (or repeats-in-toxin motifs) separated by linkers. The block V motif on its own has been reported to be non-responsive to calcium. Only when the N- and C-terminal linkers, or flanking groups, were fused did the motif bind calcium and fold. In an effort to understand the requirements for beta roll folding, we have truncated the N- and C-terminal flanks at several locations to determine the minimal essential sequences. Calcium-responsive beta roll folding occurred even in the absence of the natural N-terminal flank. The natural C-terminal flank could not be truncated without decreased calcium affinity and only partially truncated before losing calcium-responsiveness. Globular protein fusion at the C-terminus likewise enabled calcium-induced folding but fusions solely at the N-terminus failed. This demonstrates that calcium-induced folding is an inherent property of the beta roll motif rather than the flanking groups. Given the disparate nature of the observed functional flanking groups, C-terminal fusions appear to confer calcium-responsiveness to the beta roll motif via a non-specific mechanism, suggesting that entropic stabilization of the unstructured C-terminus can enable beta roll folding. Increased calcium affinity was observed when the natural C-terminal flank was used to enable calcium-induced folding, pointing to its cooperative participation in beta roll formation. This work indicates that a general principle of C-terminal entropic stabilization can enable stimulus-responsive repeat protein folding, while the C-terminal flank has a specific role in tuning calcium-responsive beta roll formation. These observations are in stark contrast to what has been reported for other repeat proteins.


Microbiology | 2008

Protein HGFI from the edible mushroom Grifola frondosa is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers

Lei Yu; Baohua Zhang; Géza R. Szilvay; Ren Sun; Janne Jänis; Zefang Wang; Shuren Feng; Haijin Xu; Markus B. Linder; Mingqiang Qiao

Hydrophobins are a group of low-molecular-mass, cysteine-rich proteins that have unusual biophysical properties. They are highly surface-active and can self-assemble at hydrophobic-hydrophilic interfaces, forming surface layers that are able to reverse the hydropathy of surfaces. Here we describe a novel hydrophobin from the edible mushroom Grifola frondosa, which was named HGFI and belongs to class I. The hydrophobin gene was identified during sequencing of random clones from a cDNA library, and the corresponding protein was isolated as a hot SDS-insoluble aggregate from the cell wall. The purified HGFI was found to have 83 amino acids. The protein sequence deduced from the cDNA sequence had 107 amino acids, from which a 24 aa signal sequence had been cleaved off in the mature protein. This signal sequence was 5 aa longer than had been predicted on the basis of signal peptide analysis of the cDNA. Rodlet mosaic structures were imaged using atomic force microscopy (AFM) on mica surfaces after drying-down HGFI solutions. Using Langmuir films we were also able to take images of both the hydrophobic and hydrophilic sides of films formed at the air-water interface. No distinct structure was observed in films compressed once, but in films compressed several times rodlet structures could be seen. Most rodlets were aligned in the same direction, indicating that formation of rodlets may be promoted during compression of the monolayer.


Biochemistry | 2009

A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase †

Géza R. Szilvay; Mark Blenner; Oren Shur; Donald M. Cropek; Scott Banta

A better understanding of the conformational changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin (RTX) domains, calcium binding triggers the natively unstructured domain to adopt a beta roll structure. Here we present an in vitro Forster resonance energy transfer (FRET)-based method for the investigation of the conformational behavior of an RTX domain from the Bordetella pertussis adenylate cyclase consisting of nine repeat units. Equilibrium and stopped-flow FRET between fluorescent proteins, attached to the termini of the domain, were measured in an analysis of the end-to-end distance changes in the RTX domain. The method was complemented with circular dichroism spectroscopy, tryptophan fluorescence, and bis-ANS dye binding. High ionic strength was observed to decrease the calcium affinity of the RTX domain. A truncation and single amino acid mutations yielded insights into the structural determinants of beta roll formation. Mutating the conserved Asp residue in one of the nine repeats significantly reduced the affinity of the domains for calcium ions. Removal of the sequences flanking the repeat domain prevented folding, but replacing them with fluorescent proteins restored the conformational behavior, suggesting an entropic stabilization. The FRET-based method is a useful technique that complements other low-resolution techniques for investigating the dynamic conformational behavior of the RTX domain and other intrinsically disordered protein domains.


FEBS Letters | 2007

The relation between solution association and surface activity of the hydrophobin HFBI from Trichoderma reesei

Géza R. Szilvay; Kaisa Kisko; Ritva Serimaa; Markus B. Linder

Hydrophobins are small fungal surface active proteins that self‐assemble at interfaces into films with nanoscale structures. The hydrophobin HFBI from Trichoderma reesei has been shown to associate in solution into tetramers but the role of this association on the function of HFBI has remained unclear. We produced two HFBI variants that showed a significant shift in solution association equilibrium towards the tetramer state. However, this enhanced solution association did not alter the surface properties of the variant HFBIs. The results show that there is not a strong relationship between HFBI solution association state and surface properties such as surface activity.


Langmuir | 2012

Self-assembly of Class II Hydrophobins on Polar Surfaces

Mathias S. Grunér; Géza R. Szilvay; Mattias Berglin; Michael Lienemann; Päivi Laaksonen; Markus B. Linder

Hydrophobins are structural proteins produced by filamentous fungi that are amphiphilic and function through self-assembling into structures such as membranes. They have diverse roles in the growth and development of fungi, for example in adhesion to substrates, for reducing surface tension to allow aerial growth, in forming protective coatings on spores and other structures. Hydrophobin membranes at the air-water interface and on hydrophobic solids are well studied, but understanding how hydrophobins can bind to a polar surface to make it more hydrophobic has remained unresolved. Here we have studied different class II hydrophobins for their ability to bind to polar surfaces that were immersed in buffer solution. We show here that the binding under some conditions results in a significant increase of water contact angle (WCA) on some surfaces. The highest contact angles were obtained on cationic surfaces where the hydrophobin HFBI has an average WCA of 62.6° at pH 9.0, HFBII an average of 69.0° at pH 8.0, and HFBIII had an average WCA of 61.9° at pH 8.0. The binding of the hydrophobins to the positively charged surface was shown to depend on both pH and ionic strength. The results are significant for understanding the mechanism for formation of structures such as the surface of mycelia or fungal spore coatings as well as for possible technical applications.

Collaboration


Dive into the Géza R. Szilvay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arja Paananen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Päivi Laaksonen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaisa Kisko

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bartosz Gabryelczyk

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Elina Vuorimaa

Tampere University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge