Ggoch Ddeul Han
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ggoch Ddeul Han.
Chemical Science | 2011
Valentina Colombo; Simona Galli; Hye Jin Choi; Ggoch Ddeul Han; Angelo Maspero; Giovanni Palmisano; Norberto Masciocchi; Jeffrey R. Long
Reactions between the tritopic pyrazole-based ligand 1,3,5-tris(1H-pyrazol-4-yl)benzene (H3BTP) and transition metal acetate salts in DMF afford microporous pyrazolate-bridged metal–organic frameworks of the type M3(BTP)2·xsolvent (M = Ni (1), Cu, (2), Zn (3), Co (4)). Ab-initioX-ray powder diffraction methods were employed in determining the crystal structures of these compounds, revealing 1 and 2 to exhibit an expanded sodalite-like framework with accessible metal cation sites, while 3 and 4 possess tetragonal frameworks with hydrophobic surfaces and narrower channel diameters. Compounds 1–4 can be desolvated without loss of crystallinity by heating under dynamic vacuum, giving rise to microporous solids with BET surface areas of 1650, 1860, 930 and 1027 m2 g−1, respectively. Thermogravimetric analyses and powder X-ray diffraction measurements demonstrate the exceptional thermal and chemical stability of these frameworks. In particular, 3 is stable to heating in air up to at least 510 °C, while 1 is stable to heating in air to 430 °C, as well as to treatment with boiling aqueous solutions of pH 2 to 14 for two weeks. Unexpectedly, 2 and 3 are converted into new crystalline metal–organic frameworks upon heating in boiling water. With the combination of stability under extreme conditions, high surface area, and exposed metal sites, it is anticipated that 1 may open the way to testing metal–organic frameworks for catalytic processes that currently employ zeolites.
Journal of Materials Chemistry | 2016
Ggoch Ddeul Han; Sarah S. Park; Yun Liu; David Zhitomirsky; Eugene Cho; Mircea Dincă; Jeffrey C. Grossman
Photocontrolled self-assembly of molecules has been utilized to change the physical properties of organic materials for various applications, while photon energy storage materials that incorporate photochromic molecules such as azobenzenes have been recognized as another highly attractive class of materials that convert and store photon energy in the strained chemical bonds. Herein, we demonstrate the photocontrolled self-assembly and disassembly of photon energy storage materials based on new diacetylene derivatives with azobenzene moieties and with varied alkyl spacers and linkers. We developed a series of symmetric diacetylenes and polydiacetylenes and obtained high energy-density materials that can store up to 176.2 kJ mol−1 (or 200.2 kJ mol−1, if completely charged); more than double that of pristine azobenzene. The extra energy storage in the materials in addition to the isomerization enthalpy of azobenzene units is enabled by the different phase of materials in the ground state (crystalline solid) and in metastable state (amorphous solid/liquid). It is notable that the phase change characteristic of organic materials can be a parameter to consider in terms of designing high energy density photon energy storage materials.
ACS Applied Materials & Interfaces | 2016
Sehoon Chang; Ggoch Ddeul Han; Jonathan G. Weis; Hyoungwon Park; Olivia Hentz; Zhibo Zhao; Timothy M. Swager; Silvija Gradečak
Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.
Langmuir | 2014
Duncan den Boer; Ggoch Ddeul Han; Timothy M. Swager
We present a new templating approach that combines the templating properties of nanoporous networks with the dynamic properties and the lattice mismatch of domain boundaries. This templating approach allows for the inclusion of guests with different sizes without the need for a strict molecular design to tailor the nanoporous network. With this approach, nonperiodic patterns of functional molecules can be formed and studied. We show that domain boundaries in a trimesic acid network are preferred over pores within the network as adsorption sites for fullerenes by a factor of 100-200. Pristine fullerenes of different sizes and functionalized fullerenes were templated in this way.
Advanced Functional Materials | 2013
Ggoch Ddeul Han; William R. Collins; Trisha L. Andrew; Vladimir Bulovic; Timothy M. Swager
Organic Electronics | 2016
Ggoch Ddeul Han; Andrea Maurano; Jonathan G. Weis; Vladimir Bulovic; Timothy M. Swager
Archive | 2017
Shreya H. Dave; Brent D. Keller; Ggoch Ddeul Han; Jeffrey C. Grossman
Archive | 2013
Timothy M. Swager; Vladimir Bulovic; Ggoch Ddeul Han; Trisha L. Andrew
Synfacts | 2012
Timothy M. Swager; Ggoch Ddeul Han
Synfacts | 2012
Timothy M. Swager; Ggoch Ddeul Han