Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghada A. Soliman is active.

Publication


Featured researches published by Ghada A. Soliman.


Journal of Biological Chemistry | 2010

mTOR Ser-2481 Autophosphorylation Monitors mTORC-specific Catalytic Activity and Clarifies Rapamycin Mechanism of Action

Ghada A. Soliman; Hugo A. Acosta-Jaquez; Elaine A. Dunlop; Bilgen Ekim; Nicole E. Maj; Andrew R. Tee; Diane C. Fingar

The mammalian target of rapamycin (mTOR) Ser/Thr kinase signals in at least two multiprotein complexes distinguished by their different partners and sensitivities to rapamycin. Acute rapamycin inhibits signaling by mTOR complex 1 (mTORC1) but not mTOR complex 2 (mTORC2), which both promote cell growth, proliferation, and survival. Although mTORC2 regulation remains poorly defined, diverse cellular mitogens activate mTORC1 signaling in a manner that requires sufficient levels of amino acids and cellular energy. Before the identification of distinct mTOR complexes, mTOR was reported to autophosphorylate on Ser-2481 in vivo in a rapamycin- and amino acid-insensitive manner. These results suggested that modulation of mTOR intrinsic catalytic activity does not universally underlie mTOR regulation. Here we re-examine the regulation of mTOR Ser-2481 autophosphorylation (Ser(P)-2481) in vivo by studying mTORC-specific Ser(P)-2481 in mTORC1 and mTORC2, with a primary focus on mTORC1. In contrast to previous work, we find that acute rapamycin and amino acid withdrawal markedly attenuate mTORC1-associated mTOR Ser(P)-2481 in cycling cells. Although insulin stimulates both mTORC1- and mTORC2-associated mTOR Ser(P)-2481 in a phosphatidylinositol 3-kinase-dependent manner, rapamycin acutely inhibits insulin-stimulated mTOR Ser(P)-2481 in mTORC1 but not mTORC2. By interrogating diverse mTORC1 regulatory input, we find that without exception mTORC1-activating signals promote, whereas mTORC1-inhibitory signals decrease mTORC1-associated mTOR Ser(P)-2481. These data suggest that mTORC1- and likely mTORC2-associated mTOR Ser-2481 autophosphorylation directly monitors intrinsic mTORC-specific catalytic activity and reveal that rapamycin inhibits mTORC1 signaling in vivo by reducing mTORC1 catalytic activity.


Journal of Biological Chemistry | 2010

Regulation of mTOR Complex 1 (mTORC1) by Raptor Ser863 and Multisite Phosphorylation

Kathryn G. Foster; Hugo A. Acosta-Jaquez; Yves Romeo; Bilgen Ekim; Ghada A. Soliman; Audrey Carrière; Philippe P. Roux; Bryan A. Ballif; Diance C. Fingar

The rapamycin-sensitive mTOR complex 1 (mTORC1) promotes protein synthesis, cell growth, and cell proliferation in response to growth factors and nutritional cues. To elucidate the poorly defined mechanisms underlying mTORC1 regulation, we have studied the phosphorylation of raptor, an mTOR-interacting partner. We have identified six raptor phosphorylation sites that lie in two centrally localized clusters (cluster 1, Ser696/Thr706 and cluster 2, Ser855/Ser859/Ser863/Ser877) using tandem mass spectrometry and generated phosphospecific antibodies for each of these sites. Here we focus primarily although not exclusively on raptor Ser863 phosphorylation. We report that insulin promotes mTORC1-associated phosphorylation of raptor Ser863 via the canonical PI3K/TSC/Rheb pathway in a rapamycin-sensitive manner. mTORC1 activation by other stimuli (e.g. amino acids, epidermal growth factor/MAPK signaling, and cellular energy) also promote raptor Ser863 phosphorylation. Rheb overexpression increases phosphorylation on raptor Ser863 as well as on the five other identified sites (e.g. Ser859, Ser855, Ser877, Ser696, and Thr706). Strikingly, raptor Ser863 phosphorylation is absolutely required for raptor Ser859 and Ser855 phosphorylation. These data suggest that mTORC1 activation leads to raptor multisite phosphorylation and that raptor Ser863 phosphorylation functions as a master biochemical switch that modulates hierarchical raptor phosphorylation (e.g. on Ser859 and Ser855). Importantly, mTORC1 containing phosphorylation site-defective raptor exhibits reduced in vitro kinase activity toward the substrate 4EBP1, with a multisite raptor 6A mutant more strongly defective that single-site raptor S863A. Taken together, these data suggest that complex raptor phosphorylation functions as a biochemical rheostat that modulates mTORC1 signaling in accordance with environmental cues.


Molecular and Cellular Biology | 2009

Site-Specific mTOR Phosphorylation Promotes mTORC1-Mediated Signaling and Cell Growth

Hugo A. Acosta-Jaquez; Jennifer A. Keller; Kathryn G. Foster; Bilgen Ekim; Ghada A. Soliman; Edward P. Feener; Bryan A. Ballif; Diane C. Fingar

ABSTRACT The mammalian target of rapamycin (mTOR) complex 1 (mTORC1) functions as a rapamycin-sensitive environmental sensor that promotes cellular biosynthetic processes in response to growth factors and nutrients. While diverse physiological stimuli modulate mTORC1 signaling, the direct biochemical mechanisms underlying mTORC1 regulation remain poorly defined. Indeed, while three mTOR phosphorylation sites have been reported, a functional role for site-specific mTOR phosphorylation has not been demonstrated. Here we identify a new site of mTOR phosphorylation (S1261) by tandem mass spectrometry and demonstrate that insulin-phosphatidylinositol 3-kinase signaling promotes mTOR S1261 phosphorylation in both mTORC1 and mTORC2. Here we focus on mTORC1 and show that TSC/Rheb signaling promotes mTOR S1261 phosphorylation in an amino acid-dependent, rapamycin-insensitive, and autophosphorylation-independent manner. Our data reveal a functional role for mTOR S1261 phosphorylation in mTORC1 action, as S1261 phosphorylation promotes mTORC1-mediated substrate phosphorylation (e.g., p70 ribosomal protein S6 kinase 1 [S6K1] and eukaryotic initiation factor 4E binding protein 1) and cell growth to increased cell size. Moreover, Rheb-driven mTOR S2481 autophosphorylation and S6K1 phosphorylation require S1261 phosphorylation. These data provide the first evidence that site-specific mTOR phosphorylation regulates mTORC1 function and suggest a model whereby insulin-stimulated mTOR S1261 phosphorylation promotes mTORC1 autokinase activity, substrate phosphorylation, and cell growth.


Lipids | 2010

mTORC1 Inhibition via Rapamycin Promotes Triacylglycerol Lipolysis and Release of Free Fatty Acids in 3T3-L1 Adipocytes

Ghada A. Soliman; Hugo A. Acosta-Jaquez; Diane C. Fingar

Signaling by mTOR complex 1 (mTORC1) promotes anabolic cellular processes in response to growth factors, nutrients, and hormonal cues. Numerous clinical trials employing the mTORC1 inhibitor rapamycin (aka sirolimus) to immuno-suppress patients following organ transplantation have documented the development of hypertriglyceridemia and elevated serum free fatty acids (FFA). We therefore investigated the cellular role of mTORC1 in control of triacylglycerol (TAG) metabolism using cultured murine 3T3-L1 adipocytes. We found that treatment of adipocytes with rapamycin reduced insulin-stimulated TAG storage ~50%. To determine whether rapamycin reduces TAG storage by upregulating lipolytic rate, we treated adipocytes in the absence and presence of rapamycin and isoproterenol, a β2-adrenergic agonist that activates the cAMP/protein kinase A (PKA) pathway to promote lipolysis. We found that rapamycin augmented isoproterenol-induced lipolysis without altering cAMP levels. Rapamycin enhanced the isoproterenol-stimulated phosphorylation of hormone sensitive lipase (HSL) on Ser-563 (a PKA site), but had no effect on the phosphorylation of HSL S565 (an AMPK site). Additionally, rapamycin did not affect the isoproterenol-mediated phosphorylation of perilipin, a protein that coats the lipid droplet to initiate lipolysis upon phosphorylation by PKA. These data demonstrate that inhibition of mTORC1 signaling synergizes with the β-adrenergic-cAMP/PKA pathway to augment phosphorylation of HSL to promote hormone-induced lipolysis. Moreover, they reveal a novel metabolic function for mTORC1; mTORC1 signaling suppresses lipolysis, thus augmenting TAG storage.


Nutrients | 2013

The Role of Mechanistic Target of Rapamycin (mTOR) Complexes Signaling in the Immune Responses

Ghada A. Soliman

The mechanistic Target of Rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase which is a member of the PI3K related kinase (PIKK) family. mTOR emerged as a central node in cellular metabolism, cell growth, and differentiation, as well as cancer metabolism. mTOR senses the nutrients, energy, insulin, growth factors, and environmental cues and transmits signals to downstream targets to effectuate the cellular and metabolic response. Recently, mTOR was also implicated in the regulation of both the innate and adaptive immune responses. This paper will summarize the current knowledge of mTOR, as related to the immune microenvironment and immune responses.


Transgenic Research | 2007

A simple qPCR-based method to detect correct insertion of homologous targeting vectors in murine ES cells

Ghada A. Soliman; Ryoko Ishida-Takahashi; Yusong Gong; Justin C. Jones; Rebecca L. Leshan; Thomas L. Saunders; Diane C. Fingar; Martin G. Myers

The identification of correctly targeted embryonic stem (ES) cell clones from among the large number of random integrants that result from most selection paradigms remains an important hurdle in the generation of animals bearing homologously targeted transgenes. Given the limitations inherent to Southern blotting and standard PCR, we utilized quantitative real-time polymerase chain reaction (qPCR) to rapidly identify murine ES cell clones containing insertions at the correct genomic locus. Importantly, this approach is useful for screening ES clones from conditional/insertional “knock-in” strategies in which there is no loss of genetic material. Simple validation avoids the generation of assays prone to false negative results. In this method, probe and primer sets that span an insertion site detect and quantify the unperturbed gene relative to an irrelevant reference gene, allowing ES cell clones to be screened for loss of detection of one copy of the gene (functional loss of homozygousity (LOH)) that occurs when the normal DNA is disrupted by the insertion event. Simply stated, detected gene copy number falls from two to one in correctly targeted clones. We have utilized such easily designed and validated qPCR LOH assays to rapidly and accurately identify insertions in multiple target sites (including the Lepr and mTOR loci) in murine ES cells, in order to generate transgenic animals.


Lipids in Health and Disease | 2006

Validation of using gene expression in mononuclear cells as a marker for hepatic cholesterol metabolism.

Dimple Aggarwal; Hedley C. Freake; Ghada A. Soliman; Amrita Dutta; Maria Luz Fernandez

HMG-CoA reductase and the LDL receptor are ubiquitously expressed in major tissues. Since the liver plays a major role in regulating circulating LDL, it is usually of interest to measure the effects of drug or dietary interventions on these proteins in liver. In humans, peripheral blood mononuclear cells have been used as a surrogate for liver to assess regulation of these genes, although there is concern regarding the validity of this approach. The purpose of this study was to evaluate the relationship between liver and mononuclear cell expression of HMG-CoA reductase and the LDL receptor in guinea pigs, a well established model for human cholesterol and lipoprotein metabolism. We extracted RNA from liver and mononuclear cells of guinea pigs from a previous study where the effects of rapamycin, an immunosuppresant drug used for transplant patients, on lipid metabolism were evaluated. Guinea pigs were assigned to three different diets containing the same amount of fat (15 g/100 g) and cholesterol (0.08 g/100 g) for a period of 3 weeks. The only difference among diets was the concentration of rapamycin: 0, 0.0028 or 0.028 g/100 g. There were no differences in plasma LDL cholesterol (LDL-C) among groups. Values were 78.4 ± 14.3, 65.8 ± 17.2 and 68.4 ± 45.4 mg/dL (P > 0.05) for guinea pigs treated with 0, low or high doses of rapamycin, respectively. The mRNA abundance for the LDL receptor and HMG-CoA reductase was measured both in liver (n = 30) and mononuclear cells (n = 22) using reverse transcriptase PCR. In agreement with the finding of no changes in plasma LDL-C, there were also no differences for the expression of HMG-CoA reductase or the LDL receptor among groups. However, a positive correlation was found between liver and mononuclear cells for both HMG-CoA reductase (r = 0.613, P < 0.01) and the LDL receptor (r = 0.622, P < 0.01). These correlations suggest that monocytes can be used in humans as an index for liver to assess diet and drug effects on the expression of HMG-CoA reductase and the LDL receptor.


Nutrition Research | 2016

Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome

Guang Ming Han; Jane L. Meza; Ghada A. Soliman; K.M. Monirul Islam; Shinobu Watanabe-Galloway

Metabolic syndrome increases the risk of mortality. Increased oxidative stress and inflammation may play an important role in the high mortality of individuals with metabolic syndrome. Previous studies have suggested that lycopene intake might be related to the reduced oxidative stress and decreased inflammation. Using data from the National Health and Nutrition Examination Survey, we examined the hypothesis that lycopene is associated with mortality among individuals with metabolic syndrome. A total of 2499 participants 20 years and older with metabolic syndrome were divided into 3 groups based on their serum concentration of lycopene using the tertile rank method. The National Health and Nutrition Examination Survey from years 2001 to 2006 was linked to the mortality file for mortality follow-up data through December 31, 2011, to determine the mortality rate and hazard ratios (HR) for the 3 serum lycopene concentration groups. The mean survival time was significantly higher in the group with the highest serum lycopene concentration (120.6 months; 95% confidence interval [CI], 118.8-122.3) and the medium group (116.3 months; 95% CI, 115.2-117.4), compared with the group with lowest serum lycopene concentration (107.4 months; 95% CI, 106.5-108.3). After adjusting for possible confounding factors, participants in the highest (HR, 0.61; P = .0113) and in the second highest (HR, 0.67; P = .0497) serum lycopene concentration groups showed significantly lower HRs of mortality when compared with participants in the lower serum lycopene concentration. The data suggest that higher serum lycopene concentration has a significant association with the reduced risk of mortality among individuals with metabolic syndrome.


British Journal of Nutrition | 2016

The influence of BMI on the association between serum lycopene and the metabolic syndrome.

Guang Ming Han; Ghada A. Soliman; Jane L. Meza; K.M. Monirul Islam; Shinobu Watanabe-Galloway

Overweight and obese individuals have an increased risk of developing the metabolic syndrome because of subsequent chronic inflammation and oxidative stress, which the antioxidant nutrient lycopene can reduce. However, studies indicate that different BMI statuses can alter the positive effects of lycopene. Therefore, the purpose of this study was to examine how BMI influences the association between serum lycopene and the metabolic syndrome. The tertile rank method was used to divide 13 196 participants, aged 20 years and older, into three groups according to serum concentrations of lycopene. The associations between serum lycopene and the metabolic syndrome were analysed separately for normal-weight, overweight and obese participants. Overall, the prevalence of the metabolic syndrome was significantly higher in the first tertile group (OR 38·6%; 95% CI 36·9, 40·3) compared with the second tertile group (OR 29·3%; 95% CI 27·5, 31·1) and the third tertile group (OR 26·6%; 95% CI 24·9, 28·3). However, the associations between lycopene and the metabolic syndrome were only significant for normal-weight and overweight participants (P0·05), even after adjusting for possible confounding variables. In conclusion, BMI appears to strongly influence the association between serum lycopene and the metabolic syndrome.


Tobacco Control | 2017

Neighbourhood exposure to point-of-sale price promotions for cigarettes is associated with financial stress among smokers: results from a population-based study

Mohammad Siahpush; Melissa Tibbits; Ghada A. Soliman; Brandon Grimm; Raees A. Shaikh; Molly McCarthy; Neng Wan; Athena K. Ramos; Antonia Correa

Aim To examine the association between neighbourhood exposure to point-of-sale (POS) cigarette price promotions and financial stress among smokers in a Midwestern metropolitan area in the USA. Methods Survey data from 888 smokers provided information on sociodemographic and smoking related variables. Financial stress was measured with the question: ‘In the last six months, because of lack of money, was there a time when you were unable to buy food or pay any important bills on time, such as electricity, telephone, credit card, rent or your mortgage? (Yes/No).’ Using audit data from 504 tobacco retailers, we estimated a score of POS price promotions for each respondent by summing the different types of promotion in each store in their neighbourhood, as defined by a 1-km roadway buffer. Results Adjusted results provided strong support for an association between higher scores of neighbourhood POS cigarette price promotions and a higher probability of financial stress (p=0.007). Conclusion Exposure to POS cigarette price promotions is associated with financial stress. This finding, coupled with previous reports that smokers with financial stress are less likely to attempt to quit or succeed in quitting smoking, suggests that POS cigarette price promotions may act as an impediment to smoking cessation.

Collaboration


Dive into the Ghada A. Soliman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa Tibbits

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mohammad Siahpush

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raees A. Shaikh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bilgen Ekim

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Dimple Aggarwal

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Jungyoon Kim

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Molly McCarthy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amrita Dutta

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge