Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ghenadie Bulat is active.

Publication


Featured researches published by Ghenadie Bulat.


ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012

Application of Scalar Dissipation Rate Model to Siemens DLE Combustors

Suresh Sadasivuni; Ghenadie Bulat; Victoria Sanderson; Nedunchezhian Swaminathan

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright


ASME Turbo Expo 2007: Power for Land, Sea, and Air | 2007

Active Control of Fuel Splits in Gas Turbine DLE Combustion Systems

Ghenadie Bulat; Dorian Skipper; Robin McMillan; Khawar J. Syed

This paper presents a system for the active control of the fuel split within a two-stream Dry Low Emissions (DLE) gas turbine. The system adjusts the fuel split based upon the amplitude of combustor pressure fluctuations and burner metal temperature. The active control system, its implementation and its performance during engine tests on Siemens SGT-200 is described. The paper describes the active fuel split control algorithm. Engine test results are then presented for steady and transient loads with different rates of change of the engine operation temperature, including rapid load acceptance and load shedding. Additionally, cycling operating conditions were tested to evaluate the performance of the algorithm in typical island mode and mechanical drive applications. The active control algorithm was successful in providing stable and reliable control of the turbine allowing very low emissions levels to be attained without manual intervention. In fact it allows areas to be reached that until now were excluded. The impact of operational parameter changes (e.g. load change, ambient temperature, fuel composition etc.) on the engine operability proved the active control software’s ability to respond seamlessly. In addition, it prevented flameout and/or high pressure fluctuation while keeping burner temperatures within limits. Recorded emissions showed a reduction in NOx was achieved when the fuel split was controlled by the algorithm compared to standard operation. This was a direct result of the algorithm successfully identifying the lean stability limit and operating close to it.Copyright


ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition | 2011

Intelligent Operation of Siemens (SGT-300) DLE Gas Turbine Combustion System Over an Extended Fuel Range With Low Emissions

Ghenadie Bulat; Kexin Liu; Gavin Brickwood; Victoria Sanderson; Brian M. Igoe

The use of an innovative, intelligent control algorithm applied to the Siemens SGT-300 DLE engine is described. The algorithm ensures stable operation and minimises emissions over a wide variation in fuel composition. The Siemens 8MW class SGT-300 gas turbine has been in operation at the University of New Hampshire (USA) since 2006. As well as operating on natural gas or diesel, the engine also operates on a gas processed from a landfill. These gases have a variable Wobbe Index (WI) covering the range 29.7 to 49 MJ/m3 . No modifications have been required to the standard DLE combustion hardware. Introduction of the intelligent control algorithm has been instrumental in achieving this tri-fuel capability. Accumulation of more than 10 000 hours running on non-standard fuel has been achieved. The intelligent control algorithm exploits knowledge of the stable operating window through continual modification of the fuel schedule to avoid both lean blow out and high metal temperatures. Operationally, this results in a reduction in the NOx emissions, through controlling the unmixedness, and higher engine reliability, through the response of the algorithm to flame stability. Combining these advantages the control algorithm can deliver reliable engine operation on variable composition fuels when using standard combustion hardware achieving single digit NOx emissions not only on natural gas but also on processed landfill gas. This paper describes the control algorithm and presents results of the development from high pressure combustion rig and engine development test to field operation with both natural gas and processed landfill gas.Copyright


ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009

Prediction of Aerodynamic Frequencies in a Gas Turbine Combustor Using Transient CFD

Ghenadie Bulat; Phil Stopford; Mark Turrell; Dawid Frach; Eoghan Buchanan; Michael Stöhr

This paper presents the results of a transient CFD analysis of the entire combustion system and the 1st row of nozzle guide vanes of a small gas turbine combustor. The focus of the investigation is the fluid dynamics within the combustor casing and its impact on combustor internal flows. Full-scale compressible transient CFD computations of a single combustor can of a Siemens gas turbine were performed. The casing flow of a 1/6th sector of the engine, corresponding to a single can was also simulated. Time dependent analyses of the combusting flow were performed for each case and the main features compared. In particular the main aerodynamic structures, such as vortex shedding and the Precessing Vortex Core (PVC), were characterised. A comparison was also made with non-combusting calculations to determine the effect of combustion. This work has taken the advantage of improvements in capabilities of numerical methods and computational power to develop design tools for gas turbine combustion systems. The work presented here is the first application of an improved turbulence model with the compressible solver in a gas turbine combustion system. This allows small scales of transient features to be captured. In addition, the presented work is the first simulation coupling the combustor aerodynamics to the casing flows.Copyright


Journal of Engineering for Gas Turbines and Power-transactions of The Asme | 2013

Extension of Fuel Flexibility in the Siemens Dry Low Emissions SGT-300-1S to Cover a Wobbe Index Range of 15 to 49 MJ/Sm3

Kexin Liu; Varkey Alexander; Victoria Sanderson; Ghenadie Bulat

The extension of gas fuel flexibility in the Siemens SGT-300 single shaft (SGT-300-1S) is reported. A successful development program has increased the capability of the Siemens Industrial Turbomachinery, Lincoln (SITL) dry low emissions (DLE) burner configuration to a fuel range covering a Wobbe index (WI) from 15 to 49 MJ/Sm3. The WI reported in this paper is at a 15 °C fuel temperature. The standard SGT-300-1S SITL DLE combustion hardware allows for gas and liquid fuels within a specified range typically associated with natural gas and diesel, respectively. The range of the WI associated with natural gas is 37–49 MJ/Sm3. Field operation of the standard production SGT-300-1S has confirmed the reliable operation with an extension to the fuels range to include processed landfill gas (PLG) from 30 to 49 MJ/Sm3. The further extension of the fuel range for the SGT-300-1S SITL DLE combustion system was achieved through high pressure testing of a single combustion system at engine operating conditions and representative fuels. The variations in the fuel heating value were achieved by blending natural gas with diluent CO2 and/or N2. Various diagnostics were used to assess the performance of the combustion system, including the measurement of combustion dynamics, temperature, fuel supply pressure, and the emissions of NOx, CO, and unburned hydrocarbons (UHCs). The results of the testing showed that the standard production burner can operate for a fuel with a WI as low as 23 MJ/Sm3, which corresponds to 35% CO2 (by volume) in the fuel. This range can be extended to 15 MJ/Sm3 (54.5% CO2 in the fuel) with only minor modification to control losses through the burner and to maintain similar fuel injection characteristics. The SITL DLE combustion system is able to cover a WI range of 15 to 49 MJ/Sm3 in two configurations. The results of testing showed a lowering in the WI, by diluting with CO2 and/or N2, so that a benefit in the NOx reduction is observed. This decrease in the WI may lead to an increased requirement of the fuel supply pressure.


ASME Turbo Expo 2012: Turbine Technical Conference and Exposition | 2012

Extension of Fuel Flexibility in the Siemens Dry Low Emissions SGT-300-1S to Cover a Wobbe Index Range of 15 to 49 MJ/m3

Kexin Liu; Varkey Alexander; Victoria Sanderson; Ghenadie Bulat

The extension of gas fuel flexibility in the Siemens SGT-300 single shaft (SGT-300-1S) is reported in this paper. A successful development programme has increased the capability of the Siemens Industrial Turbomachinery, Lincoln (SITL) dry low emissions (DLE) burner configuration to a fuel range covering a Wobbe Index (WI) from 15 to 49 MJ/m3.The standard SGT-300-1S SITL DLE combustion hardware allowed for gas and liquid fuels within a specified range typically associated with natural gas and diesel, respectively. Field operation of the standard production SGT-300-1S has confirmed the reliable operation with an extension to the fuels range to include processed land fill gas (PLG) from 32 to 49 MJ/m3.The further extension of the fuel range for the SGT-300-1S SITL DLE combustion system was achieved through high pressure testing of a single combustion system at engine operating conditions. The rig facility allowed for the actual fuel type to be tested using a mixing plant. The variations in fuel heating value were achieved by blending natural gas with diluent CO2 and/or N2. Various diagnostics were used to assess the performance of the combustion system including measurement of combustion dynamics, temperature, fuel supply pressure and emissions of NOx, CO and unburned hydrocarbon (UHC).The results of the testing showed that the standard production burner can operate for a fuel with WI as low as 23 MJ/m3 which corresponds to 35% CO2 (in volume) in the fuel. This range can be extended to 15 MJ/m3 (54.5% CO2 in the fuel) with only minor modification, to control losses through the burner and to maintain similar fuel injection characteristics.The SITL DLE combustion system is able to cover a WI range of 15 to 49 MJ/m3 in two configurations. The results of testing showed a lowering in WI, from diluting with CO2 and/or N2, a benefit in NOx reduction is observed. This decrease in WI may lead to an increased requirement in fuel supply pressure.Copyright


Combustion and Flame | 2013

Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape

Ulrich Stopper; Wolfgang Meier; Rajesh Sadanandan; Michael Stöhr; Manfred Aigner; Ghenadie Bulat


Combustion and Flame | 2014

NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method

Ghenadie Bulat; W.P. Jones; A.J. Marquis


Proceedings of the Combustion Institute | 2013

Large Eddy Simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method

Ghenadie Bulat; W.P. Jones; A.J. Marquis


Proceedings of the Combustion Institute | 2015

Reacting flow in an industrial gas turbine combustor: LES and experimental analysis

Ghenadie Bulat; E. Fedina; C. Fureby; Wolfgang Meier; Ulrich Stopper

Collaboration


Dive into the Ghenadie Bulat's collaboration.

Top Co-Authors

Avatar

W.P. Jones

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge