Gherhardt Ribatski
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gherhardt Ribatski.
Applied Mechanics Reviews | 2008
Lixin Cheng; Gherhardt Ribatski; John R. Thome
Reference EPFL-ARTICLE-147393doi:10.1115/1.2955990View record in Web of Science Record created on 2010-03-19, modified on 2017-05-10
International Journal of Heat and Mass Transfer | 2003
Gherhardt Ribatski; Jos e M. Saiz Jabardo
The present paper reports the results of an experimental investigation of saturated pool boiling of halocarbon refrigerants on cylindrical surfaces of different materials. Experiments covered a wide range of reduced pressures and heat fluxes, being carried out on copper, brass and stainless steel surfaces with different finishing conditions. The obtained results are discussed with regard to the controlled physical and operational parameters of the investigation. An empirical correlation is proposed in terms of reduced pressures. The performance of the correlation can be deemed adequate, considering that it compares well with experimental results of different authors.
Heat Transfer Engineering | 2007
Gherhardt Ribatski; John R. Thome
This paper presents a state-of-the-art review of two-phase flow and flow boiling across horizontal tube bundles. The review covers studies related to the dynamic aspects of two-phase flow on the shell side of staggered and in-line tube bundles for upward, downward, and side-to-side flows (i.e. the evaluation of void fraction, two-phase flow behaviors and pressure drops). Heat transfer experimental work and heat transfer prediction methods on tube bundles in cross-flow for plain, low-fin, and enhanced boiling tubes are also covered. The proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop are critically described. These prediction methods are generally based on experimental results for adiabatic air-water flows, and noticeable discrepancies are revealed in the results provided by them. This study reveals that before now, there were no heat transfer prediction methods that can be recommended as a general design tool. Finally, this study suggests further research focusing on the development of representative databanks and prediction methods.
Journal of The Brazilian Society of Mechanical Sciences and Engineering | 2004
J. M. Saiz Jabardo; E. Fockink da Silva; Gherhardt Ribatski; S. F. de Barros
This paper reports results from an investigation on the performance of the Rohsenows type of correlation when applied to the nucleate boiling of halocarbon refrigerants over cylindrical surfaces of different material. Experimental data for refrigerants R-11, R-123, R-12, and R-134a have been raised and fitted according to two different procedures. It has been determined that exponents m and n are weakly affected by the refrigerant, and surface material and finishing. Liquid/surface combinations and surface roughness affect the coefficient Csf. A correlation has been developed for Csf in terms of the liquid/surface combination and surface roughness. The resulting correlation has been evaluated through the experimental data used in the fitting process and results obtained elsewhere. Deviations of correlation with respect to the experimental heat transfer coefficient are within acceptable ranges.
Journal of Heat Transfer-transactions of The Asme | 2012
Cristiano Bigonha Tibiriçá; Gherhardt Ribatski; John R. Thome
Experimental flow boiling heat transfer results are presented for horizontal 1.0 and 2.2 mm I. D. (internal diameter) stainless steel tubes for tests with R1234ze(E), a new refrigerant developed as a substitute for R134a with a much lower global warming potential (GWP). The experiments were performed for these two tube diameters in order to investigate a possible transition between macro and microscale flow boiling behavior. The experimental campaign includes mass velocities ranging from 50 to 1500 kg/m(2) s, heat fluxes from 10 to 300 kW/m(2), exit saturation temperatures of 25, 31 and 35 degrees C, vapor qualities from 0.05 to 0.99 and heated lengths of 180 mm and 361 mm. Flow pattern characterization was performed using high speed videos. Heat transfer coefficient, critical heat flux and flow pattern data were obtained. R1234ze(E) demonstrated similar thermal performance to R134a data when running at similar conditions. [DOI: 10.1115/1.4004933]
Heat Transfer Engineering | 2007
Gherhardt Ribatski; Wei Zhang; L. Consolini; Jinliang Xu; John R. Thome
Xu et al. have recently published a set of results for boiling heat transfer measurements in a multi-channel micro-scale evaporator for flow boiling of acetone in triangular cross-section channels (hydraulic diameter of 155.4 mm). In the present collaboration, we assess our current capability to predict this independent flow boiling data set with a fluid not in the original database and also much smaller in size using the phenomenological three-zone model of Thome, Dupont, and Jacobi. The method models boiling in small diameter channels in the elongated bubble/slug flow regime. The boiling data falling in this regime are identified here using a new micro-scale flow pattern map proposed by Revellin in order to utilize only test data corresponding to the elongated bubble flow mode. The decrease of the measured wall temperature due to the heat spread by longitudinal conduction through the heat sink was investigated through a finite differences analysis. In addition, a data reduction procedure different than that one used by Xu et al. was used and, consequently, some differences in the heat transfer behavior were found. Based on the present database, a new set of empirical parameters for the three-zone model was proposed. The conjugated effect of flow pattern and bubble/slug frequency on the heat transfer coefficient was also investigated.
Heat Transfer Engineering | 2011
Cristiano Bigonha Tibiriçá; Gherhardt Ribatski
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m−2 s−1, heat flux from 0 to 55 kW m−2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m−1 and from 1 to 7 kW m−2 K−1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.
Heat Transfer Engineering | 2007
L. Consolini; Gherhardt Ribatski; John R. Thome; Wei Zhang; Jinliang Xu
Remarkably different behaviors are found when comparing micro-scale flow boiling heat transfer data by distinct authors, even under similar experimental conditions. Such differences are almost certainly related to the complexity of confined forced-flow boiling. Certain aspects of the phenomenon, which are negligible in the macro-scale, become surprisingly relevant when the system size becomes small. From the results reported in the literature on the thermal-fluid features of evaporating flows in small channels, the following study presents a discussion concerning convective boiling heat transfer, highlighting the aspects that are characteristic to confined two-phase flows.
Heat Transfer Engineering | 2013
Cristiano Bigonha Tibiriçá; Sylwia Szczukiewicz; Gherhardt Ribatski; John R. Thome
This article presents new experimental critical heat flux results under saturated flow boiling conditions for a macro-/microscale tube. The data were obtained in a horizontal 2.20-mm inside diameter stainless-steel tube with heating lengths of 361 and 154 mm, R134a and R245fa as working fluids, mass velocities ranging from 100 to 1500 kg/m2-s, critical heat flux from 25 to 300 kW/m2, exit saturation temperatures of 25, 31, and 35°C, and critical vapor qualities ranging from 0.55 to 1. The experimental results show that critical heat flux (CHF) increases with increasing mass velocity and inlet subcooling but decreases with increasing saturation temperature and heated length. The data also indicated a higher CHF for R245fa when compared with R134a at similar conditions. The experimental data were compared against four CHF predictive methods and the results of the comparisons are reported.
Journal of The Brazilian Society of Mechanical Sciences and Engineering | 2011
Fabio Toshio Kanizawa; Renan S. Hernandes; Anderson Antonio Ubices de Moraes; Gherhardt Ribatski
Twisted-tape inserts are frequently used in heat exchangers as a passive and inexpensive heat transfer enhancement method. However, their use results not only heat transfer coefficient increments, but also pressure drop penalties. The present study analyses the literature on single and two-phase frictional pressure drop inside tubes with twisted-tape inserts focusing on the physical mechanism and the effects of the use of twisted-tape in comparison to plain tubes. Experimental data were gathered from the open literature and compared against the available correlations developed in order to predict two-phase frictional pressure drop in tubes containing twisted-tape inserts. It was found that none of the correlations was able to predict such a database accurately. A new correlation to estimate the friction factor for two-phase flows inside tubes with twisted-tape is also proposed. Contrarily to previous studies, the proposed correlation presents reasonable predictions under single and two-phase flow conditions and obeys the trends when the twisted-tape ratio tends to zero and infinite.