Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gia-Phong Vu is active.

Publication


Featured researches published by Gia-Phong Vu.


PLOS Pathogens | 2011

A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors.

Hao Gong; Gia-Phong Vu; Yong-Ping Bai; Elton Chan; Ruobin Wu; Edward Z. Yang; Fenyong Liu; Sangwei Lu

Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Oral delivery of RNase P ribozymes by Salmonella inhibits viral infection in mice

Yong Bai; Hao Gong; Hongjian Li; Gia-Phong Vu; Sangwei Lu; Fenyong Liu

Safe, effective, and tissue-specific delivery is a central issue for the therapeutic application of nucleic-acid-based gene interfering agents, such as ribozymes and siRNAs. In this study, we constructed a functional RNase P-based ribozyme (M1GS RNA) that targets the overlapping mRNA region of M80.5 and protease, two murine cytomegalovirus (MCMV) proteins essential for viral replication. In addition, a novel attenuated strain of Salmonella, which exhibited efficient gene transfer activity and little cytotoxicity and pathogenicity in mice, was constructed and used for delivery of anti-MCMV ribozyme. In MCMV-infected macrophages treated with the constructed attenuated Salmonella strain carrying the functional M1GS RNA construct, we observed an 80–85% reduction in the expression of M80.5/protease and a 2,500-fold reduction in viral growth. Oral inoculation of the attenuated Salmonella strain in mice efficiently delivered antiviral M1GS RNA into spleens and livers, leading to substantial expression of the ribozyme without causing significant adverse effects in the animals. Furthermore, the MCMV-infected mice that were treated orally with Salmonella carrying the functional M1GS sequence displayed reduced viral gene expression, decreased viral titers, and improved survival compared to the untreated mice or mice treated with Salmonella containing control ribozyme sequences. Our results provide direct evidence that oral delivery of M1GS RNA by Salmonella-based vectors effectively inhibits viral gene expression and replication in mice. Moreover, this study demonstrates the utility of Salmonella-mediated oral delivery of RNase P ribozyme for gene-targeting applications in vivo.


Microbiology | 2010

Differential expression of Salmonella type III secretion system factors InvJ, PrgJ, SipC, SipD, SopA and SopB in cultures and in mice

Hao Gong; Gia-Phong Vu; Yong Bai; Edward Z. Yang; Fenyong Liu; Sangwei Lu

The type III secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) is important for the invasion of epithelial cells during development of Salmonella-associated enterocolitis. It has been suggested that the level and timing of the expression of the SPI-1 T3SS proteins and effectors dictate the consequences of bacterial infection and pathogenesis. However, the expression of these proteins has not been extensively studied in vivo, especially during the later stages of salmonellosis when the infection is established. We have constructed recombinant Salmonella strains that contain a FLAG epitope inserted in-frame to genes invJ, prgJ, sipC, sipD, sopA and sopB, and investigated the expression of the tagged proteins both in vitro and in vivo during murine salmonellosis. Mice were inoculated intraperitoneally or intragastrically with the tagged Salmonella strains. At different time points post-infection, bacteria were recovered from various organs, and the expression of the tagged proteins was determined. Our results provide direct evidence that PrgJ and SipD are expressed in Salmonella colonizing the liver and ileum of infected animals at both the early and late stages of infection. Furthermore, our study has shown that the InvJ protein is expressed preferentially in Salmonella colonizing the ileum but not the liver, while SipC is expressed preferentially in Salmonella colonizing the liver but not the ileum. Thus, Salmonella appears to express different SPI-1 proteins and effectors when colonizing specific tissues. Our results suggest that differential expression of these proteins may be important for tissue-specific aspects of bacterial pathogenesis such as gastroenterititis in the ileum and systemic infection in the liver.


BMC Microbiology | 2010

Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar Enteritidis protein expression upon exposure to hydrogen peroxide.

Kihoon Kim; Edward Z. Yang; Gia-Phong Vu; Hao Gong; Jing Su; Fenyong Liu; Sangwei Lu

BackgroundSalmonellaenterica, a common food-borne bacterial pathogen, is believed to change its protein expression profile in the presence of different environmental stress such as that caused by the exposure to hydrogen peroxide (H2O2), which can be generated by phagocytes during infection and represents an important antibacterial mechanism of host cells. Among Salmonella proteins, the effectors of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) are of particular interest since they are expressed during host infection in vivo and are important for invasion of epithelial cells and for replication in organs during systemic infection, respectively. However, the expression profiles of these proteins upon exposure to H2O2 or to host cells in vivo during the established phase of systemic infection have not been extensively studied.ResultsUsing stable isotope labeling coupled with mass spectrometry, we performed quantitative proteomic analysis of Salmonellaenterica serovar Enteritidis and identified 76 proteins whose expression is modulated upon exposure to H2O2. SPI-1 effector SipC was expressed about 3-fold higher and SopB was expressed approximately 2-fold lower in the presence of H2O2, while no significant change in the expression of another SPI-1 protein SipA was observed. The relative abundance of SipA, SipC, and SopB was confirmed by Western analyses, validating the accuracy and reproducibility of our approach for quantitative analysis of protein expression. Furthermore, immuno-detection showed substantial expression of SipA and SipC but not SopB in the late phase of infection in macrophages and in the spleen of infected mice.ConclusionsWe have identified Salmonella proteins whose expression is modulated in the presence of H2O2. Our results also provide the first direct evidence that SipC is highly expressed in the spleen at late stage of salmonellosis in vivo. These results suggest a possible role of SipC and other regulated proteins in supporting survival and replication of Salmonella under oxidative stress and during its systemic infection in vivo.


Molecular Therapy | 2013

Inhibition of Hepatitis B Virus Gene Expression and Replication by Ribonuclease P

Chuan Xia; Yuan-Chuan Chen; Hao Gong; Wenbo Zeng; Gia-Phong Vu; Phong Trang; Sangwei Lu; Jianguo Wu; Fenyong Liu

Nucleic acid-based gene interfering approaches, such as those mediated by RNA interference and RNase P-associated external guide sequence (EGS), have emerged as promising antiviral strategies. The RNase P-based technology is unique, because a custom-designed EGS can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, a functional EGS was constructed to target hepatitis B virus (HBV) essential transcripts. Furthermore, an attenuated Salmonella strain was constructed and used for delivery of anti-HBV EGS in cells and in mice. Substantial reduction in the levels of HBV gene expression and viral DNA was detected in cells treated with the Salmonella vector carrying the functional EGS construct. Furthermore, oral inoculation of Salmonella carrying the EGS construct led to an inhibition of ~95% in the levels of HBV gene expression and a reduction of ~200,000-fold in viral DNA level in the livers and sera of the treated mice transfected with a HBV plasmid. Our results suggest that EGSs are effective in inhibiting HBV replication in cultured cells and mammalian livers, and demonstrate the use of Salmonella-mediated delivery of EGS as a promising therapeutic approach for human diseases including HBV infection.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Effective inhibition of cytomegalovirus infection by external guide sequences in mice

Xiaohong Jiang; Hao Gong; Yuan-Chuan Chen; Gia-Phong Vu; Phong Trang; Chen-Yu Zhang; Sangwei Lu; Fenyong Liu

Ribonuclease P complexed with external guide sequence (EGS) bound to mRNA represents a unique nucleic acid-based gene interference approach for modulation of gene expression. Compared with other strategies, such as RNA interference, the EGS-based technology is unique because a custom-designed EGS molecule can hybridize with any mRNA and recruit intracellular ribonuclease P for specific degradation of the target mRNA. It has not been reported whether the EGS-based technology can modulate gene expression in mice. In this study, a functional EGS was constructed to target the mRNA encoding the protease (mPR) of murine cytomegalovirus (MCMV), which is essential for viral replication. Furthermore, a unique attenuated strain of Salmonella was generated for gene delivery of EGS in cultured cells and in mice. Efficient expression of EGS was observed in cultured cells treated with the generated Salmonella vector carrying constructs with the EGS expression cassette. Moreover, a significant reduction in mPR expression and viral growth was found in MCMV-infected cells treated with Salmonella carrying the construct with the functional EGS sequence. When MCMV-infected mice were orally treated with Salmonella carrying EGS expression cassettes, viral gene expression and growth in various organs of these animals were reduced and animal survival improved. Our study suggests that EGS RNAs, when expressed following Salmonella-mediated gene transfer, effectively inhibit viral gene expression and infection in mice. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated delivery of EGS as a unique approach for treatment that reduces viral diseases in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Salmonella-mediated delivery of RNase P-based ribozymes for inhibition of viral gene expression and replication in human cells

Yong Bai; Hongjian Li; Gia-Phong Vu; Hao Gong; Sean Umamoto; Tianhong Zhou; Sangwei Lu; Fenyong Liu

A fundamental challenge in gene therapy is to develop approaches for delivering nucleic acid-based gene interfering agents, such as small interfering RNAs and ribozymes, to the appropriate cells in a way that is tissue/cell specific, efficient, and safe. Using human cytomegalovirus (HCMV) infection of differentiated macrophages as the model, we showed that Salmonella can efficiently deliver RNase P-based ribozyme sequence in specific human cells, leading to substantial ribozyme expression and effective inhibition of viral infection. We constructed a functional RNase P ribozyme (M1GS RNA) that targets the overlapping mRNA region of two HCMV capsid proteins, the capsid scaffolding protein (CSP) and assemblin, which are essential for viral capsid formation. Substantial expression of ribozymes was observed in human differentiated macrophages that were treated with attenuated Salmonella strains carrying the ribozyme sequence constructs. A reduction of 87–90% in viral CSP expression and a reduction of about 5,000-fold in viral growth were observed in cells that were treated with Salmonella carrying the sequence of the functional ribozyme but not with those carrying the sequence of a control ribozyme that contained mutations abolishing the catalytic activity. To our knowledge, this study showed for the first time that ribozymes expressed following targeted gene transfer with Salmonella-based vectors are highly active and specific in blocking viral infection. Moreover, these results demonstrate the feasibility to develop Salmonella-mediated gene transfer of RNase P ribozymes as an effective approach for gene-targeting applications.


PLOS ONE | 2012

Effective inhibition of human immunodeficiency virus 1 replication by engineered RNase P ribozyme.

Wenbo Zeng; Yuan-Chuan Chen; Yong Bai; Phong Trang; Gia-Phong Vu; Sangwei Lu; Jianguo Wu; Fenyong Liu

Using an in vitro selection procedure, we have previously isolated RNase P ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, a variant was used to target the HIV RNA sequence in the tat region. The variant cleaved the tat RNA sequence in vitro about 20 times more efficiently than the wild type ribozyme. Our results provide the first direct evidence that combined mutations at nucleotide 83 and 340 of RNase P catalytic RNA from Escherichia coli (G83 -> U83 and G340 -> A340) increase the overall efficiency of the ribozyme in cleaving an HIV RNA sequence. Moreover, the variant is more effective in reducing HIV-1 p24 expression and intracellular viral RNA level in cells than the wild type ribozyme. A reduction of about 90% in viral RNA level and a reduction of 150 fold in viral growth were observed in cells that expressed the variant, while a reduction of less than 10% was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, engineered ribozyme variants are effective in inhibiting HIV infection. These results also demonstrate the potential of engineering RNase P ribozymes for anti-HIV application.


Viruses | 2014

Engineered RNase P Ribozymes Effectively Inhibit Human Cytomegalovirus Gene Expression and Replication

Zhu Yang; Gia-Phong Vu; Hua Qian; Yuan-Chuan Chen; Yu Wang; Michael Reeves; Ke Zen; Fenyong Liu

RNase P ribozyme can be engineered to be a sequence-specific gene-targeting agent with promising application in both basic research and clinical settings. By using an in vitro selection system, we have previously generated RNase P ribozyme variants that have better catalytic activity in cleaving an mRNA sequence than the wild type ribozyme. In this study, one of the variants was used to target the mRNA encoding human cytomegalovirus (HCMV) essential transcription factor immediate-early protein 2 (IE2). The variant was able to cleave IE2 mRNA in vitro 50-fold better than the wild type ribozyme. A reduction of about 98% in IE2 expression and a reduction of 3500-fold in viral production was observed in HCMV-infected cells expressing the variant compared to a 75% reduction in IE2 expression and a 100-fold reduction in viral production in cells expressing the ribozyme derived from the wild type sequence. These results suggest that ribozyme variants that are selected to be highly active in vitro are also more effective in inhibiting the expression of their targets in cultured cells. Our study demonstrates that RNase P ribozyme variants are efficient in reducing HCMV gene expression and growth and are potentially useful for anti-viral therapeutic application.


PLOS ONE | 2013

Engineered External Guide Sequences Are Highly Effective in Inhibiting Gene Expression and Replication of Hepatitis B Virus in Cultured Cells

Zhigang Zhang; Gia-Phong Vu; Hao Gong; Chuan Xia; Yuan-Chuan Chen; Fenyong Liu; Jianguo Wu; Sangwei Lu

External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella -mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella -mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.

Collaboration


Dive into the Gia-Phong Vu's collaboration.

Top Co-Authors

Avatar

Fenyong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Sangwei Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Hao Gong

University of California

View shared research outputs
Top Co-Authors

Avatar

Phong Trang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong Bai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongjian Li

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge