Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giacomo Garibotto is active.

Publication


Featured researches published by Giacomo Garibotto.


Journal of Clinical Investigation | 1980

Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency.

Alberto Tizianello; G De Ferrari; Giacomo Garibotto; G. Gurreri; C Robaudo

The net renal metabolism of amino acids and ammonia in the post absorptive state was evaluated in subjects with normal renal function and in patients with chronic renal insufficiency by measuring renal uptake and release, and urinary excretion of free amino acids and ammonia. In normal subjects the kidney extracts glutamine, proline, citrulline, and phenylalanine and releases serine, arginine, taurine, threonine, tyrosine, ornithine, lysine, and perhaps alanine. The renal uptake of amino acids from arterial blood occurs by way of plasma only, whereas approximately a half of amino acid release takes place by way of blood cells. Glycine is taken up from arterial plasma, while similar amounts of this amino acid are released by way of blood cells. In the same subjects total renal ammonia production can be largely accounted for by glutamine extracted. In patients with chronic renal insufficiency (a) the renal uptake of phenylalanine and the release of taurine and ornithine disappear; (b) the uptake of glutamine and proline, and the release of serine and threonine are reduced by 80--90%; (c) the uptake of citrulline and the release of alanine, arginine, tyrosine, and lysine are reduced by 60--70%; (d) no exchange of glycine is detectable either by way of plasma or by way of blood cells; (e) exchange of any other amino acid via blood cells disappears, and (f) total renal ammonia production is reduced and not more than 35% of such production can be accounted for by glutamine extracted, so that alternative precursors must be used. A 140% excess of nitrogen release found in the same patients suggests an intrarenal protein and peptide breakdown, which eventually provides free amino acids for ammonia production.


Journal of Clinical Investigation | 1997

Effects of recombinant human growth hormone on muscle protein turnover in malnourished hemodialysis patients.

Giacomo Garibotto; A Barreca; Rodolfo Russo; A Sofia; P Araghi; A Cesarone; M Malaspina; F Fiorini; F Minuto; A Tizianello

To assess the effect of recombinant human growth hormone (rhGH) on muscle protein metabolism in uremic patients with malnutrition, forearm [3H]phenylalanine kinetics were evaluated in six chronically wasted (body weight 79% of ideal weight) hemodialysis (HD) patients in a self-controlled, crossover study. Forearm protein dynamics were evaluated before, after a 6-wk course of rhGH (5 mg thrice weekly) and after a 6-wk washout period. After rhGH: (a) forearm phenylalanine net balance--the difference between phenylalanine incorporation into and phenylalanine release from muscle proteins--decreased by 46% (-8+/-2 vs. -15+/-2 nmol/min x 100 ml at the baseline and -11+/-2 after washout, P < 0.02); (b) phenylalanine rate of disposal, an index of protein synthesis, increased by 25% (25+/-5 vs. 20+/-5 at the baseline and 20+/-4 after washout, P < 0.03); (c) phenylalanine rate of appearance, an index of protein degradation, was unchanged (33+/-5 vs. 35+/-5 at the baseline and 31+/-4 after washout); (d) forearm potassium release declined (0.24+/-0.13 vs. 0.60+/-0.15 microeq/min at the baseline, and 0.42+/-0.20 microeq/min after washout P < 0.03); (e) changes in the insulin-like growth factor binding protein (IGFBP)-1 levels and insulin-like growth factor-I (IGF-I)/IGFBP-3 ratios accounted for 15.1% and 47.1% of the percent variations in forearm net phenylalanine balance, respectively. Together, these two factors accounted for 62.2% of variations in forearm net phenylalanine balance during and after rhGH administration. These data indicate: (a) that rhGH administration in malnourished hemodialysis patients is followed by an increase in muscle protein synthesis and by a decrease in the negative muscle protein balance observed in the postabsorptive state; and (b) that the reduction in net protein catabolism obtained with rhGH can be accounted for by the associated changes in circulating free, but not total, IGF-I levels.


American Journal of Physiology-renal Physiology | 2008

Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy

Daniela Verzola; Maria Teresa Gandolfo; Gianfranco Gaetani; Annamaria Ferraris; Rosa Mangerini; Franco Ferrario; Barbara Villaggio; Fabio Gianiorio; Fanny Tosetti; Ursula Weiss; Paolo Traverso; Mariano Mji; Giacomo Deferrari; Giacomo Garibotto

We examined the hypothesis that senescence represents a proximate mechanism by which the kidney is damaged in type 2 diabetic nephropathy (DN). As a first step, we studied whether the senescence-associated beta-galactosidase (SA-beta-Gal) and the cell cycle inhibitor p16INK4A are induced in renal biopsies from patients with type 2 DN. SA-beta-Gal staining was approximately threefold higher (P < 0.05) than in controls in the tubular compartment of diabetic kidneys and correlated directly with body mass index and blood glucose. P16INK4A expression was significantly increased in tubules (P < 0.005) and in podocytes (P = 0.04). Nuclear p16INK4A in glomeruli was associated with proteinuria (P < 0.002), while tubular p16INK4A was directly associated with body mass index, LDL cholesterol, and HbA1c (P < 0.001-0.05). In a parallel set of experiments, proximal tubule cells passaged under high glucose presented a limited life span and an approximately twofold increase in SA-beta-Gal and p16INK4A protein. Mean telomere lengths decreased approximately 20% as an effect of replicative senescence. In addition, mean telomere decreased further by approximately 30% in cells cultivated under high glucose. Our results show that the kidney with type 2 diabetic nephropathy displays an accelerated senescent phenotype in defined renal cell types, mainly tubule cells and, to a lesser extent, podocytes. A similar senescent pattern was observed when proximal tubule cell cultures where incubated under high-glucose media. These changes are associated with shortening tubular telomere length in vitro. These findings indicate that diabetes may boost common pathways involving kidney cell senescence, thus reinforcing the role of the metabolic syndrome on biological aging of tissues.


Journal of Investigative Medicine | 2002

Taurine prevents apoptosis induced by high ambient glucose in human tubule renal cells

Daniela Verzola; Maria Bertolotto; Barbara Villaggio; Luciano Ottonello; Franco Dallegri; Guido Frumento; Valeria Berruti; Maria Teresa Gandolfo; Giacomo Garibotto; Giacomo Deferrari

Background Hyperglycemia selectively triggers apoptosis in tubule and endothelial cells. Taurine, a conditionally essential amino acid, is abundant in several tubule segments, but its role has not been defined fully. It can serve as an osmolyte or as an endogenous antioxidant. Taurine metabolism is altered in diabetes mellitus, with extracellular and intracellular pools reduced. It is still unknown whether taurine can play a role as a protective agent in apoptosis induced by high glucose in tubular cells. Methods Apoptosis (by annexin V binding and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling method), cellular reactive oxygen species (ROS) formation (by fluorescent probe 2′-7′ dichlorofluorescin diacetate and FACScan flow cytometry), and Bcl-2 and Bax proteins (by immunostaining) were studied in a human proximal tubular cell line (HK-2) grown in a medium with physiologic (5.5 mM) or high (30 mM) glucose concentrations for 48 hours. In separate experiments, taurine (3-24 mM) was added to the media. Results The exposure of human tubule cells to 30 mM glucose for 48 hours resulted in a significant increase in apoptosis compared with 5.5 mM glucose (35±8% vs. 6±3%, p<0.001). Thirty mM mannitol failed to induce the effects of high glucose. High glucose-mediated apoptosis was associated with a decrease in the expression of Bcl-2 (-87%) and a twofold increase in the expression of Bax protein. Taurine had a dose-dependent effect in preventing high-glucose-induced apoptosis (-78%, p<0.001 at 24 mM). Moreover, with taurine, intracellular ROS decreased by 34% (p<0.05), and changes in intracellular ROS formation induced by taurine at 24 hours predicted the variations in the apoptotic index at 48 hours (r=0.87, p<0.02). Other antioxidants, such as glutathione and N-acetylcysteine, also attenuated the high glucose-induced apoptosis. Conclusion These results demonstrate that taurine attenuates hyperglycemia-induced apoptosis in human tubular cells via an inhibition of oxidative stress. Taurine might act as an endogenous antioxidant in tubule cells and could exert a beneficial effect in preventing tubulointerstitial injury in diabetic nephropathy.


American Journal of Transplantation | 2012

Posttransplant De Novo Donor-Specific HLA Antibodies Identify Pediatric Kidney Recipients at Risk for Late Antibody-Mediated Rejection

Fabrizio Ginevri; Arcangelo Nocera; Patrizia Comoli; Annalisa Innocente; Michela Cioni; A. Parodi; I. Fontana; Alberto Magnasco; A. Nocco; Augusto Tagliamacco; Angela Sementa; P. Ceriolo; L. Ghio; Marco Zecca; Massimo Cardillo; Giacomo Garibotto; Gian Marco Ghiggeri; F. Poli

The emerging role of humoral immunity in the pathogenesis of chronic allograft damage has prompted research aimed at assessing the role of anti‐HLA antibody (Ab) monitoring as a tool to predict allograft outcome. Data on the natural history of allografts in children developing de novo Ab after transplantation are limited. Utilizing sera collected pretransplant, and serially posttransplant, we retrospectively evaluated 82 consecutive primary pediatric kidney recipients, without pretransplant donor‐specific antibodies (DSA), for de novo Ab occurrence, and compared results with clinical–pathologic data. At 4.3‐year follow up, 19 patients (23%) developed de novo DSA whereas 24 had de novo non‐DSA (NDSA, 29%). DSA appeared at a median time of 24 months after transplantation and were mostly directed to HLA‐DQ antigens. Among the 82 patients, eight developed late/chronic active C4d+ antibody‐mediated rejection (AMR), and four C4d‐negative AMR. Late AMR correlated with DSA (p < 0.01), whose development preceded AMR by 1‐year median time. Patients with DSA had a median serum creatinine of 1.44 mg/dL at follow up, significantly higher than NDSA and Ab‐negative patients (p < 0.005). In our pediatric cohort, DSA identify patients at risk of renal dysfunction, AMR and graft loss; treatment started at Ab emergence might prevent AMR occurrence and/or progression to graft failure.


Journal of Clinical Investigation | 1996

Kidney, splanchnic, and leg protein turnover in humans. Insight from leucine and phenylalanine kinetics.

Paolo Tessari; Giacomo Garibotto; S. Inchiostro; Cristina Robaudo; Stefano Saffioti; Monica Vettore; Michela Zanetti; Rodolfo Russo; Giacomo Deferrari

The rate of kidney protein turnover in humans is not known. To this aim, we have measured kidney protein synthesis and degradation in postabsorptive humans using the arterio-venous catheterization technique combined with 14C-leucine, 15N-leucine, and 3H-phenylalanine tracer infusions. These measurements were compared with those obtained across the splanchnic bed, the legs (approximately muscle) and in the whole body. In the kidneys, protein balance was negative, as the rate of leucine release from protein degradation (16.8 +/- 5.1 mumol/min.1.73 m2) was greater (P < 0.02) than its uptake into protein synthesis (11.6 +/- 5.1 mumol/min. 1.73 m2). Splanchnic net protein balance was approximately 0 since leucine from protein degradation (32.1 +/- 9.9 mumol/min. 1.73 m2) and leucine into protein synthesis (30.8 +/- 11.5 mumol/min. 1.73 m2) were not different. In the legs, degradation exceeded synthesis (27.4 +/- 6.6 vs. 20.3 +/- 6.5 mumol/min. 1.73 m2, P < 0.02). The kidneys extracted alpha-ketoisocaproic acid, accounting for approximately 70% of net splanchnic alpha-ketoisocaproic acid release. The contributions by the kidneys to whole-body leucine rate of appearance, utilization for protein synthesis, and oxidation were approximately 11%, approximately 10%, and approximately 26%, respectively; those by the splanchnic area approximately 22%, approximately 27%, and approximately 18%; those from estimated total skeletal muscle approximately 37%, approximately 34%, and approximately 48%. Estimated fractional protein synthetic rates were approximately 42%/d in the kidneys, approximately 12% in the splanchnic area, and approximately 1.5% in muscle. This study reports the first estimates of kidney protein synthesis and degradation in humans, also in comparison with those measured in the splanchnic area, the legs, and the whole-body.


Journal of The American Society of Nephrology | 2004

Oxidative Stress Mediates Apoptotic Changes Induced by Hyperglycemia in Human Tubular Kidney Cells

Daniela Verzola; Maria Bertolotto; Barbara Villaggio; Luciano Ottonello; Franco Dallegri; Francesca Salvatore; Valeria Berruti; Maria Teresa Gandolfo; Giacomo Garibotto; Giacomo Deferrari

Reactive oxygen species (ROS) are important mediators for several biologic responses, including apoptosis. The present study evaluated the time course of changes in intracellular ROS production and apoptosis-related proteins, as well as apoptotic changes in human tubular proximal cells (HK-2 cells) exposed to hyperglycemia. Apoptosis (annexin V binding), ROS formation (fluorescence probe dichlorofluorescin diacetate and FACScan flow cytometry), and X chromosome-linked protein (XIAP; Western blot) were studied in HK-2 cells grown in a medium containing normal (NG) or high glucose (HG) concentrations (5.5 or 30 mM, respectively) for 18 to 48 h. HG promoted an increase (65% at 18 h and 73% at 24 h; P < 0.05 versus NG) in intracellular ROS generation. At 18 h, the NF-kB binding activity (evaluated by electrophoretic mobility-shift assay) was suppressed by HG. At the same time, the expression of NF-kB-induced antiapoptotic XIAP was reduced in HG-treated cells. Apoptotic changes were observed at 48 h (34 +/- 7% in HG versus 10 +/- 3% in NG; P < 0.001). Changes in ROS production at 24 h predicted changes in the apoptotic index at 48 h (r = 0.96, P < 0.0001). These results suggest that hyperglycemia induces apoptotic changes in human tubular cells via an increase in oxidative stress and that a downregulation of antiapoptotic protein XIAP is a component of this response.


International Journal of Environmental Research and Public Health | 2011

Protein-energy wasting and mortality in chronic kidney disease.

Alice Bonanni; Irene Mannucci; Daniela Verzola; Antonella Sofia; Stefano Saffioti; Gianetta E; Giacomo Garibotto

Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with an increased death risk from cardiovascular diseases. However, while even minor renal dysfunction is an independent predictor of adverse cardiovascular prognosis, PEW becomes clinically manifest at an advanced stage, early before or during the dialytic stage. Mechanisms causing loss of muscle protein and fat are complex and not always associated with anorexia, but are linked to several abnormalities that stimulate protein degradation and/or decrease protein synthesis. In addition, data from experimental CKD indicate that uremia specifically blunts the regenerative potential in skeletal muscle, by acting on muscle stem cells. In this discussion recent findings regarding the mechanisms responsible for malnutrition and the increase in cardiovascular risk in CKD patients are discussed. During the course of CKD, the loss of kidney excretory and metabolic functions proceed together with the activation of pathways of endothelial damage, inflammation, acidosis, alterations in insulin signaling and anorexia which are likely to orchestrate net protein catabolism and the PEW syndrome.


Journal of The American Society of Nephrology | 2004

Leptin as a Uremic Toxin Interferes with Neutrophil Chemotaxis

Luciano Ottonello; Paola Gnerre; Maria Bertolotto; Marina Mancini; Patrizia Dapino; Rodolfo Russo; Giacomo Garibotto; T. Barreca; Franco Dallegri

Leptin is a pleiotropic molecule involved in energy homeostasis, hematopoiesis, inflammation, and immunity. Hypoleptinemia characterizing starvation has been strictly related to increased susceptibility to infection secondary to malnutrition. Nevertheless, ESRD is characterized by high susceptibility to bacterial infection despite hyperleptinemia. Defects in neutrophils play a crucial role in the infectious morbidity, and several uremic toxins that are capable of depressing neutrophil functions have been identified. Only a few and contrasting reports about leptin and neutrophils are available. This study provides evidence that leptin inhibits neutrophil migration in response to classical chemoattractants. Moreover, serum from patients with ESRD inhibits migration of normal neutrophils in response to N-formyl-methionyl-leucyl-phenylalanine with a strict correlation between serum leptin levels and serum ability to suppress neutrophil locomotion. Finally, the serum inhibitory activity can be effectively prevented by immune depletion of leptin. The results also show, however, that leptin by itself is endowed with chemotactic activity toward neutrophils. The two activities-inhibition of the cell response to chemokines and stimulation of neutrophil migration-could be detected at similar concentrations. On the contrary, neutrophils exposed to leptin did not display detectable [Ca(2+)](i) mobilization, oxidant production, or beta(2)-integrin upregulation. The results demonstrate that leptin is a pure chemoattractant devoid of secretagogue properties that are capable of inhibiting neutrophil chemotaxis to classical neutrophilic chemoattractants. Taking into account the crucial role of neutrophils in host defense, the leptin-mediated ability of ERSD serum to inhibit neutrophil chemotaxis appears as a potential mechanism that contributes to the establishment of infections in ERSD.


Journal of Clinical Investigation | 1982

Renal ammoniagenesis in an early stage of metabolic acidosis in man.

Alberto Tizianello; Giacomo Deferrari; Giacomo Garibotto; Cristina Robaudo; Nicola Acquarone; Gian Marco Ghiggeri

Total renal ammonia production and ammonia precursor utilization were evaluated in patients under normal acid-base balance and in patients with 24-h NH4Cl acidosis by measuring (a) ammonia excreted with urine and that added to renal venous blood, and (b) amino acid exchange across the kidney. In 24-h acidosis not only urinary ammonia excretion is increased, but also total ammonia production is augmented (P less than 0.005) in comparison with controls. By evaluating the individual role of acid-base parameters, urine pH and urine flow in influencing renal ammonia production, it was shown that the degree of acidosis and urine flow are likely major factors stimulating ammoniagenesis. Both urine pH and urine flow are determinant in the preferential shift of ammonia into urine. In 1-d acidosis, renal extraction of glutamine was not increased and the total ammonia produced/glutamine N extracted ratio was higher than in controls (P less than 0.005) and was inversely correlated with the log of arterial bicarbonate concentration (P less than 0.001). In the same condition, renal glycine and ornithine uptake took place; the more severe the acidosis, the greater was the renal extraction of these amino acids (P less than 0.001). These data indicate that at the early stages of metabolic acidosis, in spite of a brisk increase in ammonia production, the mechanisms responsible for the increased glutamine use, which are operative in chronic acidosis, are not activated and other ammonia precursors, besides glutamine, are probably used for ammonia production.

Collaboration


Dive into the Giacomo Garibotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge