Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giacomo Paonessa is active.

Publication


Featured researches published by Giacomo Paonessa.


The EMBO Journal | 1995

Two distinct and independent sites on IL-6 trigger gp 130 dimer formation and signalling.

Giacomo Paonessa; Rita Graziani; A De Serio; Rocco Savino; Laura Ciapponi; Armin Lahm; Anna Laura Salvati; Carlo Toniatti; Gennaro Ciliberto

The helical cytokine interleukin (IL) 6 and its specific binding subunit IL‐6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution‐phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL‐6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL‐6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL‐6 variants complexed with IL‐6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL‐6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL‐6, two IL‐6R alpha and two gp130 molecules. We propose here a model representing the IL‐6 receptor complex as hexameric, which might be common to other helical cytokines.


Journal of Virology | 2007

High-Avidity Monoclonal Antibodies against the Human Scavenger Class B Type I Receptor Efficiently Block Hepatitis C Virus Infection in the Presence of High-Density Lipoprotein

Maria Teresa Catanese; Rita Graziani; Thomas von Hahn; Martine Moreau; Thierry Huby; Giacomo Paonessa; Claudia Santini; Alessandra Luzzago; Charles M. Rice; Riccardo Cortese; Alessandra Vitelli; Alfredo Nicosia

ABSTRACT The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformation-dependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.


The EMBO Journal | 1988

Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA.

Giacomo Paonessa; Fotini Gounari; R Frank; Riccardo Cortese

NF1‐like proteins play a role in transcription of liver‐specific genes. A DNA‐binding protein, recognizing half of the canonical NF1 binding site (TGGCA) present on the human albumin and retinol‐binding protein genes, has been purified from rat liver. Several peptides deriving from a tryptic digest of the purified protein were sequenced and the sequence was used to synthesize specific oligonucleotides. Two overlapping cDNA clones were obtained from a rat‐liver cDNA library; their sequence reveals an open reading frame coding for 505 amino acids, including all the peptides sequenced from the purified protein. The DNA‐binding domain, most likely located within the first 250 amino acids, is highly homologous to the sequence of CTF/NF1 purified from HeLa cells. Northern analysis reveals several mRNA species present in different combinations in various rat tissues.


The EMBO Journal | 1994

Generation of interleukin-6 receptor antagonists by molecular-modeling guided mutagenesis of residues important for gp130 activation

Rocco Savino; Armin Lahm; Anna Laura Salvati; Laura Ciapponi; Elisabetta Sporeno; Sergio Altamura; Giacomo Paonessa; Carlo Toniatti; Gennaro Ciliberto

Interleukin‐6 (IL‐6) drives the sequential assembly of a receptor complex formed by the IL‐6 receptor (IL‐6R alpha) and the signal transducing subunit, gp130. A model of human IL‐6 (hIL‐6) was constructed by homology using the structure of bovine granulocyte colony stimulating factor. The modeled cytokine was predicted to interact sequentially with the cytokine binding domains of IL‐6R alpha and gp130 bridging them in a way similar to that of the interaction between growth hormone and its homodimeric receptor. Several residues on helices A and C which were predicted as contact points between IL‐6 and gp130 and therefore essential for IL‐6 signal transduction, were subjected to site‐directed mutagenesis individually or in combined form. Interestingly, while single amino acid changes never produced major alterations in IL‐6 bioactivity, a subset of double mutants of Y31 and G35 showed a considerable reduction of biological activity and were selectively impaired from associating with gp130 in binding assays in vitro, while they maintained wild‐type affinity towards hIL‐6‐R alpha. More importantly, we demonstrated the antagonistic effect of mutant Y31D/G35F versus wild‐type IL‐6.


Journal of Virology | 2010

Role of Scavenger Receptor Class B Type I in Hepatitis C Virus Entry: Kinetics and Molecular Determinants

Maria Teresa Catanese; Helenia Ansuini; Rita Graziani; Thierry Huby; Martine Moreau; Jonathan K. Ball; Giacomo Paonessa; Charles M. Rice; Riccardo Cortese; Alessandra Vitelli; Alfredo Nicosia

ABSTRACT Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.


Journal of Virology | 2009

Role of SR-BI in HCV entry: kinetics and molecular determinants

Maria Teresa Catanese; Helenia Ansuini; Rita Graziani; Thierry Huby; Martine Moreau; Jonathan K. Ball; Giacomo Paonessa; Charles M. Rice; Riccardo Cortese; Alessandra Vitelli; Alfredo Nicosia

ABSTRACT Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.


Journal of Medicinal Chemistry | 2005

Potent Inhibitors of Subgenomic Hepatitis C Virus RNA Replication through Optimization of Indole-N-Acetamide Allosteric Inhibitors of the Viral NS5B Polymerase

Steven Harper; Salvatore Avolio; Barbara Pacini; Marcello Di Filippo; Sergio Altamura; Licia Tomei; Giacomo Paonessa; Stefania Di Marco; Andrea Carfi; Claudio Giuliano; Julio Padron; Fabio Bonelli; Giovanni Migliaccio; Raffaele De Francesco; Ralph Laufer; and Michael Rowley; Frank Narjes

Infections caused by hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. Compounds that block replication of subgenomic HCV RNA in liver cells are of interest because of their demonstrated antiviral effect in the clinic. In followup to our recent report that indole-N-acetamides (e.g., 1) are potent allosteric inhibitors of the HCV NS5B polymerase enzyme, we describe here their optimization as cell-based inhibitors. The crystal structure of 1 bound to NS5B was a guide in the design of a two-dimensional compound array that highlighted that formally zwitterionic inhibitors have strong intracellular potency and that pregnane X receptor (PXR) activation (an undesired off-target activity) is linked to a structural feature of the inhibitor. Optimized analogues devoid of PXR activation (e.g., 55, EC(50) = 127 nM) retain strong cell-based efficacy under high serum conditions and show acceptable pharmacokinetics parameters in rat and dog.


Journal of Virology | 2003

Persistent Replication of Hepatitis C Virus Replicons Expressing the β-Lactamase Reporter in Subpopulations of Highly Permissive Huh7 Cells

Edward M. Murray; Jay A. Grobler; Eric J. Markel; Marco F. Pagnoni; Giacomo Paonessa; Adam J. Simon; Osvaldo A. Flores

ABSTRACT Progress toward development of better therapies for the treatment of hepatitis C virus (HCV) infection has been hampered by poor understanding of HCV biology and the lack of biological assays suitable for drug screening. Here we describe a powerful HCV replication system that employs HCV replicons expressing the β-lactamase reporter (bla replicons) and subpopulations of Huh7 cells that are more permissive (or “enhanced”) to HCV replication than naïve Huh7 cells. Enhanced cells represent a small fraction of permissive cells present among naïve Huh7 cells that is enriched during selection with replicons expressing the neomycin phosphotransferase gene (neo replicons). The level of permissiveness of cell lines harboring neo replicons can vary greatly, and the enhanced phenotype is usually revealed upon removal of the neo replicon with inhibitors of HCV replication. Replicon removal is responsible for increased permissiveness, since this effect could be reproduced either with alpha interferon or with an HCV NS5B inhibitor. Moreover, adaptive mutations present in the replicon genome used during selection do not influence the permissiveness of the resulting enhanced-cell population, suggesting that the mechanisms governing the permissiveness of enhanced cells are independent from viral adaptation. Because the β-lactamase reporter allows simultaneous quantitation of replicon-harboring cells and reporter activity, it was possible to investigate the relationship between genome replication activity and the frequency with which transfected genomes can establish persistent replication. Our study demonstrates that differences in the replication potential of the viral genome are manifested primarily in the frequency with which persistent replication is established but modestly affect the number of replicons observed per replicon-harboring cell. Replicon copy number was found to vary over a narrow range that may be defined by a minimal number required for persistent maintenance and a maximum that is limited by the availability of essential host factors.


Antiviral Chemistry & Chemotherapy | 2005

HCV antiviral resistance: the impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase.

Licia Tomei; Sergio Altamura; Giacomo Paonessa; Raffaele De Francesco; Giovanni Migliaccio

The high prevalence of the disease caused by hepatitis C virus (HCV) and the limited efficacy of interferon-based therapies have stimulated the search for safer and more effective drugs. The development of inhibitors of the HCV NS5B RNA polymerase represents a promising strategy for identifying novel anti-HCV therapeutics. However, the high genetic diversity, mutation rate and turnover of HCV are expected to favour the emergence of drug resistance, limiting the clinical usefulness of polymerase inhibitors. Thus, the characterization of the drug-resistance profile of these antiviral agents is considered crucial for identifying the inhibitors with a higher probability of clinical success. In the absence of an efficient in vitro infection system, HCV sub-genomic replicons have been used to study viral resistance to both nucleoside and non-nucleoside NS5B inhibitors. While these studies suggest that drug-resistant viruses are likely to evolve in vivo, they provide a wealth of information that should help in the identification of inhibitors with improved and distinct resistance profiles that might be used for combination therapy.


Journal of Biological Chemistry | 1996

Functional expression of soluble human interleukin-11 (IL-11) receptor alpha and stoichiometry of in vitro IL-11 receptor complexes with gp130.

Petra Neddermann; Rita Graziani; Gennaro Ciliberto; Giacomo Paonessa

The interleukin-6 (IL-6) family of cytokines activates signaling through the formation of either gp130 homodimers, as for IL-6, or gp130-leukemia inhibitory factor receptor (LIFR) heterodimers as for ciliary neurotrophic factor (CNTF), leukemia inhibitory factor, oncostatinM, and cardiotrophin-1. Recent in vitro studies with IL-6 and CNTF have demonstrated that higher order hexameric receptor complexes are assembled in which signaling chain dimerization is accompanied by the dimerization of both the cytokine molecule and its specific receptor α subunits (IL-6Rα or CNTFRα, respectively). IL-11 is a member of the IL-6 family and known to require gp130 but not LIFR for signaling. In this study we investigate the functional and biochemical composition of the IL-11 receptor complex. The human IL-11 receptor α-chain was cloned from a human bone marrow cDNA library. IL-11Rα was shown to confer IL-11 responsiveness to human hepatoma cells either by cDNA transfection or by adding a soluble form of the receptor (sIL11Rα) expressed in the baculovirus system to the culture medium. In vitro immunoprecipitation experiments showed that sIL11Rα specifically binds IL-11 and that binding is enhanced by gp130. Similarly to IL-6 and CNTF, gp130 is able to induce dimerization of the IL-11·IL-11Rα subcomplex, the result of which is the formation of a pentameric receptor complex. However, in contrast to the other two cytokines, IL-11 was unable to induce either gp130 homodimerization or gp130/LIFR heterodimerization. These results strongly suggest that an as yet unidentified receptor β-chain is involved in IL-11 signaling.

Collaboration


Dive into the Giacomo Paonessa's collaboration.

Researchain Logo
Decentralizing Knowledge