Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giampiero Palatucci is active.

Publication


Featured researches published by Giampiero Palatucci.


Annales De L Institut Henri Poincare-analyse Non Lineaire | 2016

Local behavior of fractional p-minimizers

Agnese Di Castro; Tuomo Kuusi; Giampiero Palatucci

We extend the De Giorgi-Nash-Moser theory to nonlocal, possibly degenerate integro-differential operators.


Archive | 2006

A Singular Perturbation Result with a Fractional Norm

Adriana Garroni; Giampiero Palatucci

Let I be an open bounded interval of ℝ and W a non-negative continuous function vanishing only at α, β ∈ ℝ. We investigate the asymptotic behavior in terms of Γ-convergence of the following functional


Journal of Evolution Equations | 2013

Global estimates for nonlinear parabolic equations

Paolo Baroni; Agnese Di Castro; Giampiero Palatucci


Asymptotic Analysis | 2011

p-Laplacian problems with critical Sobolev exponent

Giampiero Palatucci

G_\varepsilon (u): = \varepsilon ^{p - 2} \iint_{I \times I} {\left| {\frac{{u(x) - u(y)}} {{x - y}}} \right|^p dxdy + \frac{1} {\varepsilon }\int_I {W(u)dx (p > 2),} }


Rendiconti Lincei-matematica E Applicazioni | 2016

Hölder continuity up to the boundary for a class of fractional obstacle problems

Janne Korvenpää; Tuomo Kuusi; Giampiero Palatucci


Bulletin Des Sciences Mathematiques | 2012

Hitchhiker's guide to the fractional Sobolev spaces

Eleonora Di Nezza; Giampiero Palatucci; Enrico Valdinoci

, as ɛ → 0.


Le Matematiche | 2013

Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian

Serena Dipierro; Giampiero Palatucci; Enrico Valdinoci

AbstractWe consider nonlinear parabolic equations of the type


arXiv: Analysis of PDEs | 2014

Fractional p-eigenvalues

Giovanni Franzina; Giampiero Palatucci


Calculus of Variations and Partial Differential Equations | 2014

Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces

Giampiero Palatucci; Adriano Pisante

u_t - {\rm div}a(x, t, Du)= f(x, t) \quad {\rm on}\quad \Omega_T =\Omega\times (-T,0),


Annali di Matematica Pura ed Applicata | 2013

Local and global minimizers for a variational energy involving a fractional norm

Giampiero Palatucci; Ovidiu Savin; Enrico Valdinoci

Collaboration


Dive into the Giampiero Palatucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Pisante

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Garroni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge