Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gian Paolo Bagnara is active.

Publication


Featured researches published by Gian Paolo Bagnara.


Stem Cells | 2008

Concise review: Isolation and characterization of cells from human term placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells

Ornella Parolini; Francesco Alviano; Gian Paolo Bagnara; Grozdana Bilic; Hans Jörg Bühring; Marco Evangelista; Simone Hennerbichler; Bing Liu; Marta Magatti; Ning Mao; Toshio Miki; Fabio Marongiu; Hideaki Nakajima; Toshio Nikaido; C. Bettina Portmann-Lanz; Venkatachalam Sankar; Maddalena Soncini; Guido Stadler; Daniel Surbek; Tsuneo A. Takahashi; Heinz Redl; Norio Sakuragawa; Susanne Wolbank; Steffen M. Zeisberger; Andreas H. Zisch; Stephen C. Strom

Placental tissue draws great interest as a source of cells for regenerative medicine because of the phenotypic plasticity of many of the cell types isolated from this tissue. Furthermore, placenta, which is involved in maintaining fetal tolerance, contains cells that display immunomodulatory properties. These two features could prove useful for future cell therapy‐based clinical applications. Placental tissue is readily available and easily procured without invasive procedures, and its use does not elicit ethical debate. Numerous reports describing stem cells from different parts of the placenta, using nearly as numerous isolation and characterization procedures, have been published. Considering the complexity of the placenta, an urgent need exists to define, as clearly as possible, the region of origin and methods of isolation of cells derived from this tissue. On March 23–24, 2007, the first international Workshop on Placenta Derived Stem Cells was held in Brescia, Italy. Most of the research published in this area focuses on mesenchymal stromal cells isolated from various parts of the placenta or epithelial cells isolated from amniotic membrane. The aim of this review is to summarize and provide the state of the art of research in this field, addressing aspects such as cell isolation protocols and characteristics of these cells, as well as providing preliminary indications of the possibilities for use of these cells in future clinical applications.


Transplantation | 2005

Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp.

Laura Pierdomenico; Laura Bonsi; Mario Calvitti; Damiano Rondelli; Mario Arpinati; Gabriella Chirumbolo; Ennio Becchetti; Cosetta Marchionni; Francesco Alviano; Valentina Fossati; N. Staffolani; Michele Franchina; Alberto Grossi; Gian Paolo Bagnara

Background. Bone marrow mesenchymal stem cells (MSCs) are currently being investigated in preclinical and clinical settings because of their multipotent differentiative capacity or, alternatively, their immunosuppressive function. The aim of this study was to evaluate dental pulp (DP) as a potential source of MSCs instead of bone marrow (BM). Methods. Flow cytometric analysis showed that DP-MSCs and BM-MSCs were equally SH2, SH3, SH4, CD29 and CD 166 positive. The in vitro proliferative kinetics of MSCs were measured by 3H-thymidine incorporation uptake. The immunosuppressive function of MSCs was then tested by coculturing PHA-stimulated allogeneic T cells with or without MSCs for 3 days. Results. BM-MSCs could be differentiated in vitro into osteogenic, chondrogenic and adipogenic lineages. DP-MSCs showed osteogenic and adipocytic differentiation, but did not differentiate into chondrocytes. Although DP-MSCs grow rapidly in vitro between day 3 and day 8 of culture and then decrease their proliferation by day 15, BM-MSCs have a stable and continuous proliferation over the same period of time. The addition of DP-MSCs or BM-MSCs resulted in 91 ± 4% and 75 ± 3% inhibition of T cell response, respectively, assessed by a 3H-thymidine assay. Conclusions. Dental pulp is an easily accessible and efficient source of MSCs, with different kinetics and differentiation potentialities from MSCs as isolated from the bone marrow. The rapid proliferative capacity together with the immunoregulatory characteristics of DP-MSCs may prompt future studies aimed at using these cells in the treatment or prevention of T-cell alloreactivity in hematopoietic or solid organ allogeneic transplantation.


BMC Developmental Biology | 2007

Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro

Francesco Alviano; Valentina Fossati; Cosetta Marchionni; Mario Arpinati; Laura Bonsi; Michele Franchina; Giacomo Lanzoni; Silvia Cantoni; Claudia Cavallini; Francesca Bianchi; Pier Luigi Tazzari; Gianandrea Pasquinelli; Laura Foroni; Carlo Ventura; Alberto Grossi; Gian Paolo Bagnara

BackgroundTerm Amniotic membrane (AM) is a very attractive source of Mesenchymal Stem Cells (MSCs) due to the fact that this fetal tissue is usually discarded without ethical conflicts, leading to high efficiency in MSC recovery with no intrusive procedures. Here we confirmed that term AM, as previously reported in the literature, is an abundant source of hMSCs; in particular we further investigated the AM differentiation potential by assessing whether these cells may also be committed to the angiogenic fate. In agreement with the recommendation of the International Society for Cellular Therapy, the mesenchymal cells herein investigated were named Amniotic Membrane-human Mesenchymal Stromal Cells (AM-hMSC).ResultsThe recovery of hMSCs and their in vitro expansion potential were greater in amniotic membrane than in bone marrow stroma. At flow cytometry analysis AM-hMSCs showed an immunophenotypical profile, i.e., positive for CD105, CD73, CD29, CD44, CD166 and negative for CD14, CD34, CD45, consistent with that reported for bone marrow-derived MSCs. In addition, amniotic membrane-isolated cells underwent in vitro osteogenic (von Kossa stain), adipogenic (Oil Red-O stain), chondrogenic (collagen type II immunohistochemichal detection) and myogenic (RT-PCR MyoD and Myogenin expression as well as desmin immunohistochemical detection) differentiation. In angiogenic experiments, a spontaneous differentiation into endothelial cells was detected by in vitro matrigel assay and this behaviour has been enhanced through Vascular Endothelial Growth Factor (VEGF) induction. According to these findings, VEGF receptor 1 and 2 (FLT-1 and KDR) were basally expressed in AM-hMSCs and the expression of endothelial-specific markers like FLT-1 KDR, ICAM-1 increased after exposure to VEGF together with the occurrence of CD34 and von Willebrand Factor positive cells.ConclusionThe current study suggests that AM-hMSCs may emerge as a remarkable tool for the cell therapy of multiple diseased tissues. AM-hMSCs may potentially assist both bone and cartilage repair, nevertheless, due to their angiogenic potential, they may also pave the way for novel approaches in the development of tissue-engineered vascular grafts which are useful when vascularization of ischemic tissues is required.


Journal of Biological Chemistry | 2007

Hyaluronan Mixed Esters of Butyric and Retinoic Acid Drive Cardiac and Endothelial Fate in Term Placenta Human Mesenchymal Stem Cells and Enhance Cardiac Repair in Infarcted Rat Hearts

Carlo Ventura; Silvia Cantoni; Francesca Bianchi; Vincenzo Lionetti; Claudia Cavallini; Ignazio Scarlata; Laura Foroni; Margherita Maioli; Laura Bonsi; Francesco Alviano; Valentina Fossati; Gian Paolo Bagnara; Gianandrea Pasquinelli; Fabio A. Recchia; Alberto Perbellini

We have developed a mixed ester of hyaluronan with butyric and retinoic acid (HBR) that acted as a novel cardiogenic/vasculogenic agent in human mesenchymal stem cells isolated from bone marrow, dental pulp, and fetal membranes of term placenta (FMhMSCs). HBR remarkably enhanced vascular endothelial growth factor (VEGF), KDR, and hepatocyte growth factor (HGF) gene expression and the secretion of the angiogenic, mitogenic, and antiapoptotic factors VEGF and HGF, priming stem cell differentiation into endothelial cells. HBR also increased the transcription of the cardiac lineage-promoting genes GATA-4 and Nkx-2.5 and the yield of cardiac markerexpressing cells. These responses were notably more pronounced in FMhMSCs. FMhMSC transplantation into infarcted rat hearts was associated with increased capillary density, normalization of left ventricular function, and significant decrease in scar tissue. Transplantation of HBR-preconditioned FMhM-SCs further enhanced capillary density and the yield of human vWF-expressing cells, additionally decreasing the infarct size. Some engrafted, HBR-pretreated FMhMSCs were also positive for connexin 43 and cardiac troponin I. Thus, the beneficial effects of HBR-exposed FMhMSCs may be mediated by a large supply of angiogenic and antiapoptotic factors, and FMhMSC differentiation into vascular cells. These findings may contribute to further development in cell therapy of heart failure.


Stem Cells | 2006

Role and Function of Matrix Metalloproteinases in the Differentiation and Biological Characterization of Mesenchymal Stem Cells

Ferdinando Mannello; Gaetana A. Tonti; Gian Paolo Bagnara; Stefano Papa

Matrix metalloproteinases (MMPs), known as matrixins, are Ca‐ and Zn‐dependent endoproteinases involved in a wide variety of developmental and disease‐associated processes, proving to be crucial protagonists in many physiological and pathological mechanisms. The ability of MMPs to alter, by limited proteolysis and through the fine control of tissue inhibitors of metalloproteinases, the activity or function of numerous proteins, enzymes, and receptors suggests that they are also involved in various important cellular functions during development. In this review, we focus on the differentiation of mesenchymal stem cells (including those of the myoblastic, osteoblastic, chondroblastic, neural, and apidoblastic lineages) and the possible, if unexpected, biological significance of MMPs in its regulation. The MMP system has been implicated in several differentiation events that suggests that it mediates the proliferative and prodifferentiating effect of the matrixin proteolytic cascade. We summarize these regulatory effects of MMPs on the differentiation of mesenchymal stem cells and hypothesize on the function of MMPs in the stem cell differentiation processes.


Stem Cells | 2007

Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells.

Gianandrea Pasquinelli; Pier Luigi Tazzari; Cristiana Vaselli; Laura Foroni; Marina Buzzi; Gianluca Storci; Francesco Alviano; Francesca Ricci; Massimiliano Bonafè; Catia Orrico; Gian Paolo Bagnara; Andrea Stella; Roberto Conte

The clinical use of endothelial progenitor cells is hampered by difficulties in obtaining an adequate number of functional progenitors. This study aimed to establish whether human thoracic aortas harvested from healthy multiorgan donors can be a valuable source of angiogenic progenitors. Immunohistochemical tissue studies showed that two distinct cell populations with putative stem cell capabilities, one composed of CD34+ cells and the other of c‐kit+ cells, are present in between the media and adventitia of human thoracic aortas. Ki‐67+ cells with high growth potential were located in an area corresponding to the site of CD34+ and c‐kit+ cell residence. We thus isolated cells (0.5 ∼ 2.0 × 104 aortic progenitors per 25 cm2) which, upon culturing, coexpressed molecules of mesenchymal stromal cells (i.e., CD44+, CD90+, CD105+) and showed a transcript expression of stem cell markers (e.g., OCT4, c‐kit, BCRP‐1, Interleukin‐6) and BMI‐1. Cell expansion was adequate for use in a clinical setting. A subset of cultured cells acquired the phenotype of endothelial cells in the presence of vascular endothelial growth factor (e.g., increased expression of KDR and von Willebrand factor positivity), as documented by flow cytometry, immunofluorescence, electron microscopy, and reverse transcription‐polymerase chain reaction assays. An in vitro angiogenesis test kit revealed that cells were able to form capillary‐like structures within 6 hours of seeding. This study demonstrates that thoracic aortas from multiorgan donors yield mesenchymal stromal cells with the ability to differentiate in vitro into endothelial cells. These cells can be used for the creation of an allogenic bank of angiogenic progenitors, thus providing new options for restoring vascularization at ischemic sites.


Ultrastructural Pathology | 2007

Ultrastructural Characteristics of Human Mesenchymal Stromal (Stem) Cells Derived from Bone Marrow and Term Placenta

Gianandrea Pasquinelli; Tazzari Pl; Francesca Ricci; Cristiana Vaselli; Marina Buzzi; Roberto Conte; Catia Orrico; Laura Foroni; Andrea Stella; Francesco Alviano; Gian Paolo Bagnara; Enrico Lucarelli

Human mesenchymal stromal (stem) cells (hMSCs) isolated from adult bone marrow (BM-hMSCs) as well as amnion (AM-hMSCs) and chorion (CM-hMSCs) term placenta leaves were studied by transmission electron microscopy (TEM) to investigate their ultrastructural basic phenotype. At flow cytometry, the isolated cells showed a homogeneous expression of markers commonly used to identify hMSCs, i.e., CD105, CD44, CD90, CD166, HLA-ABC positivities, and CD45, AC133, and HLA-DR negativities. However, TEM revealed subtle yet significant differences. BM-hMSCs had mesenchymal features with dilated cisternae of rough endoplasmic reticulum (rER) and peripheral collections of multiloculated clear blisters; this latter finding mostly representing complex foldings of the plasma membrane could be revelatory of the in situ cell arrangement in the niche microenvironment. Unlike BM-hMSCs, CM-hMSCs were more primitive and metabolically quiescent, their major features being the presence of rER stacks and large peripheral collections of unbound glycogen. AM-hMSCs showed a hybrid epithelial–mesenchymal ultrastructural phenotype; epithelial characters included non-intestinal-type surface microvilli, intracytoplasmic lumina lined with microvilli, and intercellular junctions; mesenchymal features included rER profiles, lipid droplets, and well-developed foci of contractile filaments with dense bodies. These features are consistent with the view that AM-hMSCs have a pluripotent potential. In conclusion, this study documents that ultrastructural differences exist among phenotypically similar hMSCs derived from human bone marrow and term placenta leaves; such differences could be revelatory of the hMSCs in vitro differentiation potential and may provide useful clues to attempt their in situ identification.


American Journal of Pathology | 2000

The Metastatic Ability of Ewing’s Sarcoma Cells Is Modulated by Stem Cell Factor and by Its Receptor c-kit

Lorena Landuzzi; Carla De Giovanni; Giordano Nicoletti; Ilaria Rossi; Cinzia Ricci; Annalisa Astolfi; Luciano Scopece; Katia Scotlandi; Massimo Serra; Gian Paolo Bagnara; Patrizia Nanni; Pier Luigi Lollini

Ewings sarcoma is a primitive highly malignant tumor of bone and soft tissues usually metastasizing to bone, bone marrow, and lung. Growth factor receptors and their ligands may be involved in its growth and dissemination. We analyzed the expression of c-kit and its ligand stem cell factor (SCF) in a panel of six Ewings sarcoma cell lines. All cell lines exhibited substantial levels of surface c-kit expression, and five of six displayed transmembrane SCF on the cell surface. Expression of c-kit was down-modulated in all lines by exposure to exogenous SCF. The SCF treatment was able to confer to cells a growth advantage in vitro, due both to an increase in cell proliferation and to a reduction in the apoptotic rate. When used in the lower compartment of a migration chamber, SCF acted as a strong chemoattractant for Ewings sarcoma cells. The pretreatment of cells with SCF reduced their chemotactic response to SCF. In athymic nude mice, Ewings sarcoma cells injected intravenously metastasized to the lung and to a variety of extrapulmonary sites, including bone and bone marrow. Metastatic sites resembled those observed in Ewings sarcoma patients and corresponded to SCF-rich microenvironments. The in vitro pretreatment of cells with SCF strongly reduced the metastatic ability of Ewings sarcoma cells, both to the lung and to extrapulmonary sites. This could be dependent on the down-modulation of c-kit expression observed in SCF-pretreated cells, leading to a reduced sensitivity to the chemotactic and proliferative actions of SCF. Our results indicate that the response to SCF mediated by c-kit may be involved in growth, migration, and metastatic ability of Ewings sarcoma cells.


British Journal of Haematology | 1989

In vivo and in vitro inhibitory effect of α-interferon on megakaryocyte colony growth in essential thrombocythaemia

L. Gugliotta; Gian Paolo Bagnara; Lucia Catani; Licia Gaggioli; Anna Guarini; Giorgio Zauli; Monica Mattioli Belmonte; Francesco Lauria; Silvia Macchi; Sante Tura

Summary Megakaryocyte (MK) colony growth of bone marrow mononuclear non‐adherent cells was evaluated in 28 patients with essential thrombocythaemia (ET) and in 26 normal controls. The number of MK‐colony forming units (CFU‐MK per 3 × 105 plated cells) was similar in ET (68 ± 33) and in controls (63 ± 37), independently of bone marrow accessory cells. On the contrary, the size of the MK colonies was significantly (P < 0.01) greater in ET patients. Human recombinant α‐interferon 2a (α‐IFN), administered to 10 patients at a dose of 3 × 106 IU/d s.c. for 11 ± 3 weeks, was capable of inducing a significant (P < 0.01) decrease in the number (from 72 ± 16 to 31 ± 14) and size of bone marrow CFU‐MK, together with a significant reduction of the platelet count (from 1031 ± 325 to 378 ± 75 × 109/1). When added in vitro at time 0 to the culture dishes, α‐IFN inhibited the CFU‐MK growth of both normal and ET bone marrow samples, even at very low concentrations (1 and 10 IU/ml). This study demonstrates that α‐IFN, both in vivo and in vitro, exerts an inhibitory effect on the growth of MK progenitors, which appears to correlate with the clinically documented antiproliferative effect of this cytokine.


Cytometry Part B-clinical Cytometry | 2009

A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs

Diana Campioni; Roberta Rizzo; Marina Stignani; Loredana Melchiorri; Luisa Ferrari; Sabrina Moretti; Antonio Russo; Gian Paolo Bagnara; Laura Bonsi; Francesco Alviano; Giacomo Lanzoni; Antonio Cuneo; Olavio R. Baricordi; Francesco Lanza

Biologic and clinical interest in human mesenchymal stromal cells (hMSC) has risen over the last years, mainly due to their immunosuppressive properties. In this study, we investigated the basis of immunomodulant possible variability using hMSC from different sources (amniotic membrane, chorion, and bone marrow from either healthy subjects or patients with hematological malignancies, HM) and having discordant positivity for several immunological markers. The CD90+ hMSC reduced lymphoproliferative response in phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMC) via sHLA‐G and IL‐10 up‐modulation. On the contrary, hMSC showing a significantly lower expression for CD90 antigen, elicited a lymphoproliferative allogeneic response in PHA/PBMCs without any increase in soluble HLA‐G and IL‐10 levels. These data seems to suggest that CD90 molecule may be considered a novel predictive marker for hMSC inhibitory ability, and might cooperate with HLA‐G molecule in regulating suppressive versus stimulatory properties of hMSC. These results may have clinical implication in either transplantation or in regenerative medicine fields.

Collaboration


Dive into the Gian Paolo Bagnara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge