Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giancarlo Rizza is active.

Publication


Featured researches published by Giancarlo Rizza.


Journal of Applied Physics | 2007

Ion beam irradiation of embedded nanoparticles : Toward an in situ control of size and spatial distribution

Giancarlo Rizza; H. Cheverry; Thierry Gacoin; A. Lamasson; S. Henry

Irradiation of chemically synthesized Au nanoparticles embedded in a dielectric matrix promotes the formation of a halo of satellites around the original cluster. We show that the complete dissolution of the nanoparticles (NC) results in the formation of a narrow size distribution of small precipitates with a mean size of 2 nm and a standard deviation of 0.4 nm. By combining the chemical synthesis of the nanoparticles and the irradiation to induce their dissolution and precipitation, we give a guideline method for overcoming the difficulty of controlling the size and spatial distribution of the embedded NC associated with ion implantation technique. In particular, we showed that the irradiation can be used to tailor the size of the already formed NC. Moreover, we establish that the satellites cluster evolution under irradiation can be described by a two step process. These two steps are discussed in terms of classical and inverse Ostwald ripening mechanisms.


Journal of Physics: Condensed Matter | 2013

SAXS investigations of the morphology of swift heavy ion tracks in α-quartz

Boshra Afra; Matias Rodriguez; C. Trautmann; Olli H. Pakarinen; Flyura Djurabekova; K. Nordlund; Thomas Bierschenk; Raquel Giulian; Mark C Ridgway; Giancarlo Rizza; Nigel Kirby; M. Toulemonde; Patrick Kluth

The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.


Journal of Applied Physics | 2009

Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence

E. A. Dawi; Giancarlo Rizza; M. P. Mink; A. M. Vredenberg; F.H.P.M. Habraken

Irradiation with swift heavy ions of spherical Au nanoparticles confined within a silica matrix shapes them into prolate nanorods and nanowires whose principal axes are aligned along the beam direction. In the present paper, we investigate the role that is played by the initial nanoparticle size and concentration in this so-called ion-shaping mechanism. We have produced silica films wherein Au nanoparticles with average diameters of 15, 30, and 45 nm were embedded within a single plane and have irradiated these films at 300 K at normal incidence with 18, 25, and 54 MeV Ag ions. We demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned. The values of these critical fluences depend both on the ion energy and the initial nanoparticle size. Moreover, we show that 45 nm Au particles are not deformed when irradiated with 18 MeV Ag ions, such that this value corresponds to an energy threshold for the deformation process. As far as the influence of the nanoparticle concentration on the shaping characteristics is concerned, we have found that above the critical irradiation fluence, the deformation effect becomes very sensitive to the initial concentration of the nanoparticles.


Physical Review B | 2010

Flux pinning in PrFeAsO0.9 and NdFeAsO0.9F0.1 superconducting crystals

Cornelis Jacominus van der Beek; Giancarlo Rizza; M. Konczykowski; P. Fertey; I. Monnet; Thierry Klein; Ryuji Okazaki; Motoyuki Ishikado; Hijiri Kito; Akira Iyo; H. Eisaki; Shin-ichi Shamoto; Matthew Tillman; Serguey Bud'Ko; Paul C. Canfield; T. Shibauchi; Y. Matsuda

Local magnetic measurements are used to quantitatively characterize heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F) superconducting single crystals. In spite of spatial fluctuations of the critical current density on the macroscopic scale, it is shown that the major contribution comes from collective pinning of vortex lines by microscopic defects by the mean-free path fluctuation mechanism. The defect density extracted from experiment corresponds to the dopant atom density, which means that dopant atoms play an important role both in vortex pinning and in quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F) crystals, there is a background of strong pinning, which we attribute to spatial variations of the dopant atom density on the scale of a few dozen to one hundred nm. These variations do not go beyond 5% - we therefore do not find any evidence for coexistence of the superconducting and the antiferromagnetic phase. The critical current density in sub-T fields is characterized by the presence of a peak effect, the location of which in the (B,T)-plane is consistent with an order-disorder transition of the vortex lattice.


Applied Physics Letters | 2009

Ion engineering of embedded nanostructures: From spherical to facetted nanoparticles

Giancarlo Rizza; E. A. Dawi; A. M. Vredenberg; I. Monnet

We show that the high-energy ion irradiation of embedded metallic spherical nanoparticles (NPs) is not limited to their transformation into prolate nanorods or nanowires. Depending on their pristine size, the three following morphologies can be obtained: (i) nanorods, (ii) facettedlike, and (iii) almost spherical nanostructures. Planar silica films containing nearly monodisperse gold NPs (8–100 nm) were irradiated with swift heavy ions (5 GeV Pb) at room temperature for fluences up to 5×1013 cm−2. The experimental results are accounted for by considering a liquid-solid transformation of the premelted NP surface driven by the in-plane stress within the ion-deformed host matrix. This work demonstrates the interest of using ion-engineering techniques to shape embedded nanostructures into nonconventional configurations.


Nanotechnology | 2011

Ion-induced elongation of gold nanoparticles in silica by irradiation with Ag and Cu swift heavy ions: track radius and energy loss threshold.

E. A. Dawi; A. M. Vredenberg; Giancarlo Rizza; M. Toulemonde

Systematic investigations of the energy loss threshold above which the irradiation-induced elongation of spherical Au nanoparticles occurs are reported. Silica films containing Au nanoparticles with average diameters of 15-80 nm embedded within a single plane were irradiated with 12-54 MeV Ag and 10-45 MeV Cu ions at 300 K and at normal incidence. We demonstrate that the efficiency of the ion-induced nanoparticle elongation increases linearly with the electronic energy transferred per ion track length unit from the energetic ions to the silica film. Ion beam shaping occurs above a threshold value of the specific electronic energy transfer. Three relevant regions are identified with respect to the original size of the Au nanoparticles. For 15 and 30 nm diameter particles, elongation occurs for electronic stopping power larger than 3.5 keV nm(-1). For Au nanoparticles with 40-50 nm diameter an electronic stopping power above 5.5 keV nm(-1) is required for elongation to be observed. Elongation of Au nanoparticles with 80 nm diameter is observed for electronic stopping between ∼ 7-8 keV nm(-1). For all combinations of ions and energies, the ion track temperature profiles are calculated within the framework of the thermal spike model. The correlation between experimental results and simulated data indicates a thermal origin of the increase in the elongation rate with increasing the track diameter.


Journal of Applied Physics | 2010

Controlling the size distribution of embedded Au nanoparticles using ion irradiation

Y. Ramjauny; Giancarlo Rizza; Sandrine Perruchas; Thierry Gacoin; R. Botha

Samples composted of chemically synthesized Au nanoparticles (NPs) (16.0±2.0 nm) embedded within a planar silica film are used as model system to investigate the evolution of a second phase under irradiation when the temperature and the ion stopping power are changed. Samples are irradiated with 4 MeV Au2+ ions and 4 MeV Br2+ ions for temperature ranging from 30 °C up to 800 °C and for fluences up to 8×1016 cm−2. We show that at room temperature the complete dissolution of the NPs leads to the formation of smaller precipitates with a narrower size distribution, i.e., 2.0±0.3 nm. However, when the temperature is increased and/or the nuclear stopping power is decreased, a reduction in the dissolution rate was observed. This leads to the formation of a bimodal size distribution. Finally, the evolution of the density of the precipitates with the temperature is discussed in term of the thermal stability of the irradiation-induced defects within the silica matrix.


Nanotechnology | 2011

Rayleigh-like instability in the ion-shaping of Au–Ag alloy nanoparticles embedded within a silica matrix

Giancarlo Rizza; Farah Attouchi; Pierre-Eugène Coulon; Sandrine Perruchas; Thierry Gacoin; I. Monnet; L. Largeau

We have studied how spherical 23 ± 3 nm Au(45)Ag(55) nanoparticles embedded within a silica matrix transform into prolate nanorods and nanowires by irradiating them with swift heavy ions. Samples were irradiated at room temperature and normal incidence with 74 MeV Kr and 36 MeV S ions for fluences up to 1.0 × 10(15) cm(-2). We demonstrate the existence of two regimes: (i) below a critical fluence, ∼ 2.0 × 10(14) cm(-2), the transformation of the spherical nanoparticle into a nanorod is an individual process, i.e. each nanoparticle transforms into a single nanorod; (ii) for larger fluences the transformation from nanorod to nanowire becomes a collective process, i.e. the break up and dissolution of unstable nanorods contribute to the growth of long nanowires. The passage from the first to the second regime can be interpreted in terms of a Rayleigh-like instability under irradiation. The latter becomes active when the diameter of the nanowire approaches its saturation width under irradiation. Furthermore, we show that the composition of the alloy is only slightly modified during the ion-shaping process. Finally, the energy and the fluence thresholds for deformation and the deformation strain-rate are estimated.


Scientific Reports | 2016

Fabrication of Ion-Shaped Anisotropic Nanoparticles and their Orientational Imaging by Second-Harmonic Generation Microscopy.

Abdallah Slablab; Tero Isotalo; Jouni Mäkitalo; Léo Turquet; Pierre-Eugène Coulon; Tapio Niemi; C. Ulysse; Mathieu Kociak; D. Mailly; Giancarlo Rizza; Martti Kauranen

Ion beam shaping is a novel and powerful tool to engineer nanocomposites with effective three-dimensional (3D) architectures. In particular, this technique offers the possibility to precisely control the size, shape and 3D orientation of metallic nanoparticles at the nanometer scale while keeping the particle volume constant. Here, we use swift heavy ions of xenon for irradiation in order to successfully fabricate nanocomposites consisting of anisotropic gold nanoparticle that are oriented in 3D and embedded in silica matrix. Furthermore, we investigate individual nanorods using a nonlinear optical microscope based on second-harmonic generation (SHG). A tightly focused linearly or radially-polarized laser beam is used to excite nanorods with different orientations. We demonstrate high sensitivity of the SHG response for these polarizations to the orientation of the nanorods. The SHG measurements are in excellent agreement with the results of numerical modeling based on the boundary element method.


Journal of Macromolecular Science, Part A | 2014

Synthesis of Poly(vinyl pyrrolidone)/Silver Nanoprism Composites through Simultaneous Photoinduced Polymerization and Electron Transfer Processes

Marco Sangermano; Florence Vivier; Giancarlo Rizza; Yusuf Yagci

An investigation into the in situ preparation of polymer/silver nanoprism composites is described. Photoinitiated polymerizations of N-vinyl pyrrolidone (NVP) in water using 2-hydroxy-2-methyl-1-phenyl propanone as photoinitiator under nitrogen and simultaneous redox reactions of AgNO3 resulted in the formation of poly(N-vinyl pyrrolidone) (PNVP)/silver nanocomposites. Prolonged irradiations at low photoinitiator concentration and equimolar concentrations of AgNO3 and NVP produced only spherical silver nanoparticles. The nanocomposites produced at high silver and photoiniatiator concentrations with short irradiation times e.g. 5 min contain polygonal (mainly triangular) silver nanoprisms as evidenced by spectral and TEM analysis.

Collaboration


Dive into the Giancarlo Rizza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Monnet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brigitte Voit

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark C Ridgway

Australian National University

View shared research outputs
Top Co-Authors

Avatar

C. Ulysse

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christian Dufour

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

D. Mailly

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge