Gianfranco Fornaro
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianfranco Fornaro.
IEEE Transactions on Geoscience and Remote Sensing | 2009
Gianfranco Fornaro; Diego Reale; Francesco Serafino
The superposition of contributions from different stable targets within the same pixel is a phenomenon that may impair the imaging and monitoring of ground scatterers via the multipass synthetic aperture radar (SAR) interferometry technique. Three-dimensional SAR imaging, also known as SAR tomography, uses multiple views to profile the scattering power at different heights. This technique has been shown to be capable of separating interfering target responses on real data. Differential SAR tomography has been recently proposed as a technique that extends the potentialities of SAR tomography to the target deformation monitoring. It performs a 4-D space-velocity imaging that enables not only separating interfering targets in elevation but also distinguishing their single slow deformation velocities. This work addresses for the first time the application of 4-D SAR imaging to real data to determine the height and mean deformation velocity of single scatterers and double-scattering mechanisms interfering at high resolution in the same pixel. It also discusses the postprocessing steps required to identify the presence of stable single and double scatterers after elevation-velocity focusing. Moreover, it proposes a technique for the extraction of time series from interfering targets to measure possible nonlinear temporal deformations.
IEEE Transactions on Aerospace and Electronic Systems | 1999
Gianfranco Fornaro
This paper concerns the analysis and compensation of trajectory deviations in airborne synthetic aperture radar (SAR) systems. Analysis of the received data spectrum is carried out with respect to the system geometry in the presence of linear, sinusoidal, and general aircraft displacements. This shows that trajectory deviations generally produce spectral replicas along the azimuth frequency that strongly impair the quality of the focused image. Based on the derived model, we explain the rationale of the motion compensation (MOCO) strategy that must be applied at the SAR processing stage in order to limit the resolution loss. To this end aberration terms are separated into range space invariant and variant components. The former can be accounted for either in a preprocessing step or efficiently at range compression stage. The latter needs a prior accommodation of range migration effect. We design the procedure for efficient inclusion of the MOCO within a high precision scaled FT based SAR processing algorithm. Finally, we present results on simulated data aimed at validating the whole analysis and the proposed procedure.
IEEE Transactions on Geoscience and Remote Sensing | 2003
Gianfranco Fornaro; Francesco Serafino; Francesco Soldovieri
Deals with the use of multipass synthetic aperture radar (SAR) data in order to achieve three-dimensional tomography reconstruction in presence of volumetric scattering. Starting from azimuth- and range-focused SAR data relative to the same area, neglecting any mutual interaction between the targets, and assuming the propagation in homogeneous media, we investigate the possibility to focus the data also in the elevation direction. The problem is formulated in the framework of linear inverse problem and the solution makes use of the singular value decomposition of the relevant operator. This allows us to properly take into account nonuniform orbit separation and to exploit a priori knowledge regarding the size of the volume interested by the scattering mechanism, thus leading to superresolution in the elevation direction. Results obtained on simulated data demonstrate the feasibility of the proposed processing technique.
IEEE Transactions on Geoscience and Remote Sensing | 2005
Gianfranco Fornaro; Fabrizio Lombardini; Francesco Serafino
Synthetic aperture radar (SAR) interferometry is a modern efficient technique that allows reconstructing the height profile of the observed scene. However, apart for the presence of critical nonlinear inversion steps, particularly crucial in abrupt topography scenarios, it does not allow one to separate different scattering mechanisms in the elevation (height) direction within the ground pixel. Overlay of scattering at different elevations in the same azimuth-range resolution cell can be due either to the penetration of the radiation below the surface or to perspective ambiguities caused by the side-looking geometry. Multibaseline three-dimensional (3-D) SAR focusing allows overcoming such a limitation and has thus raised great interest in the recent research. First results with real data have been only obtained in the laboratory and with airborne systems, or with limited time-span and spatial-coverage spaceborne data. This work presents a novel approach for the tomographic processing of European Remote Sensing satellite (ERS) real data for extended scenes and long time span. Besides facing problems common to the airborne case, such as the nonuniformly spaced passes, this processing requires tackling additional difficulties specific to the spaceborne case, in particular a space-varying phase calibration of the data due to atmospheric variations and possible scene deformations occurring for years-long temporal spans. First results are presented that confirm the capability of ERS multipass tomography to resolve multiple targets within the same azimuth-range cell and to map the 3-D scattering properties of the illuminated scene.
IEEE Transactions on Geoscience and Remote Sensing | 2006
Eugenio Sansosti; P. Berardino; Michele Manunta; Francesco Serafino; Gianfranco Fornaro
Accurate subpixel registration of synthetic aperture radar (SAR) images is an issue that is again growing interest since its initial developments related to two-pass interferometry. Recent progress in coherent (multichannel) SAR processing raises the need for accurate registration of data takes acquired with large baseline spans, high temporal coverage, and with different frequency and/or operational modes. In this paper, we discuss a SAR image-registration procedure, based on the use of external measures which allows obtaining a very accurate alignment of SAR images. The presented technique makes use of a digital elevation model and of the precise information about the acquisition flight tracks, to compute the warping functions that map the position of each pixel in the different takes, thus avoiding any approximation. The resulting algorithm is simple, robust, precise, and very efficient; as a matter of fact, it may achieve high accuracy even in critical areas, such as steep topography regions. Moreover, the availability of an analytical and exact model allows performing a detailed sensitivity analysis that can be useful in evaluating the applicability of this technique even to future high-precision satellite systems. Extensive testing, carried out on several real European Remote Sensing and ENVISAT datasets, clearly shows the effectiveness of such algorithm in registering critical SAR images
Journal of Geophysical Research | 2001
Paul Lundgren; S. Usai; Eugenio Sansosti; R. Lanari; M. Tesauro; Gianfranco Fornaro; P. Berardino
Satellite radar interferometry of Campi Flegrei caldera, Italy, reveals a pattern of subsidence during the period 1993–1998. Interferograms spanning the first half of the observation period (1993–1995) have a lower amplitude and average rate of subsidence than those spanning either the second half (1995–1998) or the entire period (1993–1998), consistent with observations of a slowing down or reversal of subsidence during the first half of the observation period. We calculate a time series of deformation images relative to a reference image on the basis of a least squares inversion. During the observation period the maximum subsidence progresses at a rate of roughly 38 ± 2 mm/yr, with periods of no apparent subsidence in late 1996 to early 1997. To understand the characteristics of the source, we jointly invert pairs of ascending and descending differential interferograms spanning similar time intervals (first half, second half, or entire interval) of the period 1993–1998. In each case the joint inversion fits the two unwrapped interferograms with a similar subhorizontal rectangular contracting tensile dislocation striking roughly N98°E with dimensions ? 4 × 2 km and located beneath the city of Pozzuoli at a depth of 2.5–3 km. Inversion for a spheroidal or Mogi point source also produced reasonable fits but with progressively poorer overall fits to the data, respectively. Our inversion assuming a simple source in an elastic half?space does not include the possible effects of local structure on the surface deformation, a factor that may also reduce the need for an asymmetric source. The solution we find is consistent with other studies that suggest subsidence due to hydrothermal diffusion as the primary deformation mechanism during this phase of caldera deflation.
IEEE Transactions on Geoscience and Remote Sensing | 2001
Riccardo Lanari; Manlio Tesauro; Eugenio Sansosti; Gianfranco Fornaro
The authors present a new spotlight SAR data-focusing algorithm based on a two-step processing strategy that combines the advantages of two commonly adopted processing approaches: the efficiency of SPECAN algorithms and the precision of stripmap focusing techniques. The first step of the proposed algorithm implements a linear and space-invariant azimuth filtering that is carried out via a deramping-based technique representing a simplified version of the SPECAN approach. This operation allows the authors to perform a bulk azimuth raw data compression and to achieve a pixel spacing smaller than (or equal to) the expected azimuth resolution of the fully focused image. Thus, the azimuth spectral folding phenomenon, typically affecting the spotlight data, is overcome, and the space-variant characteristics of the stripmap system transfer function are preserved. Accordingly, the residual and precise focusing of the SAR data is achieved by applying a conventional stripmap processing procedure requiring a minor modification and implemented in the frequency domain. The extension of the proposed technique to the case of high bandwidth transmitted chirp signals is also discussed. Experiments carried out on real and simulated data confirm the validity of the presented approach, which is mainly focused on spaceborne systems.
IEEE Transactions on Geoscience and Remote Sensing | 1996
Riccardo Lanari; Gianfranco Fornaro; Daniele Riccio; Maurizio Migliaccio; Konstantinos Papathanassiou; João R. Moreira; Marcus Schwäbisch; Luciano Dutra; Giuseppe Puglisi; Giorgio Franceschetti; Mauro Coltelli
The authors exploit the interferometric multifrequency potentiality of the SIR-C/X-SAR system which is equipped with an L-, C-, and X-band sensor. They present a solution to improve the unwrapping performance of the C- and X-band data by considering the L-band unwrapped pattern. A new algorithm for the generation of a single digital elevation model (DEM) combining L-, C-, and X-band information is presented. This solution is based on the fusion of the unwrapped phase patterns by using a Kalman filter. The proposed fusion operation also accounts for the coherence characteristics of the three data sets. The selected test site is the Mt. Etna region in Italy which is very interesting from the volcanological and geological point of view. Numerical assessments of the achieved results are provided by evaluating the height accuracy with respect to a reference DEM.
IEEE Transactions on Aerospace and Electronic Systems | 2005
Gianfranco Fornaro; Giorgio Franceschetti; Stefano Perna
This work addresses the study of the effect of residual uncompensated motion errors due to positioning measurement instrument and digital elevation model inaccuracies on the accuracy of airborne synthetic aperture radar (SAR) images. It is shown that these not only introduce phase errors following pure geometric considerations, but they also cause additional aberrations related to their interaction with the SAR processing procedure. Extension to the repeat pass airborne interferometry is also included to show their impact on the resulting interferograms.
IEEE Transactions on Geoscience and Remote Sensing | 1996
Gianfranco Fornaro; Giorgio Franceschetti; Riccardo Lanari
Any method that permits retrieving full range (unwrapped) phase values starting from their (-/spl pi/,/spl pi/) determination (wrapped phase) can be defined as a phase unwrapping technique. This paper addresses a new procedure for phase unwrapping especially designed for interferometric synthetic aperture radar applications. The proposed algorithm is based on use of Greens first identity. Results on simulated as well as on real data are presented. They both confirm the excellent performance of the procedure.