Gianluca Bontempi
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianluca Bontempi.
Journal of Clinical Oncology | 2007
Sherene Loi; Benjamin Haibe-Kains; Christine Desmedt; Françoise Lallemand; Andrew Tutt; Cheryl Gillet; Paul Ellis; Adrian L. Harris; Jonas Bergh; John A. Foekens; J.G.M. Klijn; Denis Larsimont; Marc Buyse; Gianluca Bontempi; Mauro Delorenzi; Martine Piccart; Christos Sotiriou
PURPOSE A number of microarray studies have reported distinct molecular profiles of breast cancers (BC), such as basal-like, ErbB2-like, and two to three luminal-like subtypes. These were associated with different clinical outcomes. However, although the basal and the ErbB2 subtypes are repeatedly recognized, identification of estrogen receptor (ER) -positive subtypes has been inconsistent. Therefore, refinement of their molecular definition is needed. MATERIALS AND METHODS We have previously reported a gene expression grade index (GGI), which defines histologic grade based on gene expression profiles. Using this algorithm, we assigned ER-positive BC to either high-or low-genomic grade subgroups and compared these with previously reported ER-positive molecular classifications. As further validation, we classified 666 ER-positive samples into subtypes and assessed their clinical outcome. RESULTS Two ER-positive molecular subgroups (high and low genomic grade) could be defined using the GGI. Despite tracking a single biologic pathway, these were highly comparable to the previously described luminal A and B classification and significantly correlated to the risk groups produced using the 21-gene recurrence score. The two subtypes were associated with statistically distinct clinical outcome in both systemically untreated and tamoxifen-treated populations. CONCLUSION The use of genomic grade can identify two clinically distinct ER-positive molecular subtypes in a simple and highly reproducible manner across multiple data sets. This study emphasizes the important role of proliferation-related genes in predicting prognosis in ER-positive BC.
Clinical Cancer Research | 2008
Christine Desmedt; Benjamin Haibe-Kains; Pratyaksha Wirapati; Marc Buyse; Denis Larsimont; Gianluca Bontempi; Mauro Delorenzi; Martine Piccart; Christos Sotiriou
Purpose: Recently, several prognostic gene expression signatures have been identified; however, their performance has never been evaluated according to the previously described molecular subtypes based on the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), and their biological meaning has remained unclear. Here we aimed to perform a comprehensive meta-analysis integrating both clinicopathologic and gene expression data, focusing on the main molecular subtypes. Experimental Design: We developed gene expression modules related to key biological processes in breast cancer such as tumor invasion, immune response, angiogenesis, apoptosis, proliferation, and ER and HER2 signaling, and then analyzed these modules together with clinical variables and several prognostic signatures on publicly available microarray studies (>2,100 patients). Results: Multivariate analysis showed that in the ER+/HER2− subgroup, only the proliferation module and the histologic grade were significantly associated with clinical outcome. In the ER−/HER2− subgroup, only the immune response module was associated with prognosis, whereas in the HER2+ tumors, the tumor invasion and immune response modules displayed significant association with survival. Proliferation was identified as the most important component of several prognostic signatures, and their performance was limited to the ER+/HER2− subgroup. Conclusions: Although proliferation is the strongest parameter predicting clinical outcome in the ER+/HER2− subtype and the common denominator of most prognostic gene signatures, immune response and tumor invasion seem to be the main molecular processes associated with prognosis in the ER−/HER2− and HER2+ subgroups, respectively. These findings may help to define new clinicogenomic models and to identify new therapeutic strategies in the specific molecular subgroups.
BMC Genomics | 2008
Sherene Loi; Benjamin Haibe-Kains; Christine Desmedt; Pratyaksha Wirapati; Françoise Lallemand; Andrew Tutt; Cheryl Gillet; Paul Ellis; K Ryder; James F. Reid; Maria Grazia Daidone; Marco A. Pierotti; Els M. J. J. Berns; Maurice P.H.M. Jansen; John A. Foekens; Mauro Delorenzi; Gianluca Bontempi; Martine Piccart; Christos Sotiriou
BackgroundEstrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30–40% of ER+BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings.ResultsWe developed a gene classifier consisting of 181 genes belonging to 13 biological clusters. In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic groups (HR 2.01 95%CI: 1.29–3.13; p = 0.002). Six of the 13 gene clusters represented pathways involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was significantly predictive of response.ConclusionWe have developed a gene classifier that can predict clinical outcome in tamoxifen-treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in prognosis, our approach proposes other genes and pathways that may elucidate further mechanisms that influence clinical outcome and prediction of response to tamoxifen.
BMC Bioinformatics | 2008
Patrick E. Meyer; Frederic Lafitte; Gianluca Bontempi
ResultsThis paper presents the R/Bioconductor package minet (version 1.1.6) which provides a set of functions to infer mutual information networks from a dataset. Once fed with a microarray dataset, the package returns a network where nodes denote genes, edges model statistical dependencies between genes and the weight of an edge quantifies the statistical evidence of a specific (e.g transcriptional) gene-to-gene interaction. Four different entropy estimators are made available in the package minet (empirical, Miller-Madow, Schurmann-Grassberger and shrink) as well as four different inference methods, namely relevance networks, ARACNE, CLR and MRNET. Also, the package integrates accuracy assessment tools, like F-scores, PR-curves and ROC-curves in order to compare the inferred network with a reference one.ConclusionThe package minet provides a series of tools for inferring transcriptional networks from microarray data. It is freely available from the Comprehensive R Archive Network (CRAN) as well as from the Bioconductor website.
Eurasip Journal on Bioinformatics and Systems Biology | 2007
Patrick E. Meyer; Kevin Kontos; Frederic Lafitte; Gianluca Bontempi
The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR), an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes) network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.
Science | 2015
Gipsi Lima-Mendez; Karoline Faust; Nicolas Henry; Johan Decelle; Sébastien Colin; Fabrizio Carcillo; Samuel Chaffron; J. Cesar Ignacio-Espinosa; Simon Roux; Flora Vincent; Lucie Bittner; Youssef Darzi; Jun Wang; Stéphane Audic; Léo Berline; Gianluca Bontempi; Ana María Cabello; Laurent Coppola; Francisco M. Cornejo-Castillo; Francesco d'Ovidio; Luc De Meester; Isabel Ferrera; Marie-José Garet-Delmas; Lionel Guidi; Elena Lara; Stephane Pesant; Marta Royo-Llonch; Guillem Salazar; Pablo Sánchez; Marta Sebastián
Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.
International Journal of Control | 1999
Gianluca Bontempi; Mauro Birattari; Hugues Bersini
This paper presents local methods for modelling and control of discrete-time unknown non-linear dynamical systems, when only input-output data are available. We propose the adoption of lazy learning, a memory-based technique for local modelling. The modelling procedure uses a query-based approach to select the best model configuration by assessing and comparing different alternatives. A new recursive technique for local model identification and validation is presented, together with an enhanced statistical method for model selection. A lso, three methods to design controllers based on the local linearization provided by the lazy learning algorithm are described. In the first method the lazy technique returns the forward and inverse models of the system which are used to compute the control action to take. The second is an indirect method inspired by self-tuning regulators where recursive least squares estimation is replaced by a local approximator. The third method combines the linearization provided by t...
Journal of the National Cancer Institute | 2012
Benjamin Haibe-Kains; Christine Desmedt; Sherene Loi; Aedín C. Culhane; Gianluca Bontempi; John Quackenbush; Christos Sotiriou
BACKGROUND Single sample predictors (SSPs) and Subtype classification models (SCMs) are gene expression-based classifiers used to identify the four primary molecular subtypes of breast cancer (basal-like, HER2-enriched, luminal A, and luminal B). SSPs use hierarchical clustering, followed by nearest centroid classification, based on large sets of tumor-intrinsic genes. SCMs use a mixture of Gaussian distributions based on sets of genes with expression specifically correlated with three key breast cancer genes (estrogen receptor [ER], HER2, and aurora kinase A [AURKA]). The aim of this study was to compare the robustness, classification concordance, and prognostic value of these classifiers with those of a simplified three-gene SCM in a large compendium of microarray datasets. METHODS Thirty-six publicly available breast cancer datasets (n = 5715) were subjected to molecular subtyping using five published classifiers (three SSPs and two SCMs) and SCMGENE, the new three-gene (ER, HER2, and AURKA) SCM. We used the prediction strength statistic to estimate robustness of the classification models, defined as the capacity of a classifier to assign the same tumors to the same subtypes independently of the dataset used to fit it. We used Cohen κ and Cramer V coefficients to assess concordance between the subtype classifiers and association with clinical variables, respectively. We used Kaplan-Meier survival curves and cross-validated partial likelihood to compare prognostic value of the resulting classifications. All statistical tests were two-sided. RESULTS SCMs were statistically significantly more robust than SSPs, with SCMGENE being the most robust because of its simplicity. SCMGENE was statistically significantly concordant with published SCMs (κ = 0.65-0.70) and SSPs (κ = 0.34-0.59), statistically significantly associated with ER (V = 0.64), HER2 (V = 0.52) status, and histological grade (V = 0.55), and yielded similar strong prognostic value. CONCLUSION Our results suggest that adequate classification of the major and clinically relevant molecular subtypes of breast cancer can be robustly achieved with quantitative measurements of three key genes.
Bioinformatics | 2008
Benjamin Haibe-Kains; Christine Desmedt; Christos Sotiriou; Gianluca Bontempi
Motivation: Survival prediction of breast cancer (BC) patients independently of treatment, also known as prognostication, is a complex task since clinically similar breast tumors, in addition to be molecularly heterogeneous, may exhibit different clinical outcomes. In recent years, the analysis of gene expression profiles by means of sophisticated data mining tools emerged as a promising technology to bring additional insights into BC biology and to improve the quality of prognostication. The aim of this work is to assess quantitatively the accuracy of prediction obtained with state-of-the-art data analysis techniques for BC microarray data through an independent and thorough framework. Results: Due to the large number of variables, the reduced amount of samples and the high degree of noise, complex prediction methods are highly exposed to performance degradation despite the use of cross-validation techniques. Our analysis shows that the most complex methods are not significantly better than the simplest one, a univariate model relying on a single proliferation gene. This result suggests that proliferation might be the most relevant biological process for BC prognostication and that the loss of interpretability deriving from the use of overcomplex methods may be not sufficiently counterbalanced by an improvement of the quality of prediction. Availability: The comparison study is implemented in an R package called survcomp and is available from http://www.ulb.ac.be/di/map/bhaibeka/software/survcomp/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Molecular and Cellular Biology | 2007
Patrice Godard; Antonio Urrestarazu; Stephan Vissers; Kevin Kontos; Gianluca Bontempi; Jacques van Helden; Bruno André
ABSTRACT We compared the transcriptomes of Saccharomyces cerevisiae cells growing under steady-state conditions on 21 unique sources of nitrogen. We found 506 genes differentially regulated by nitrogen and estimated the activation degrees of all identified nitrogen-responding transcriptional controls according to the nitrogen source. One main group of nitrogenous compounds supports fast growth and a highly active nitrogen catabolite repression (NCR) control. Catabolism of these compounds typically yields carbon derivatives directly assimilable by a cells metabolism. Another group of nitrogen compounds supports slower growth, is associated with excretion by cells of nonmetabolizable carbon compounds such as fusel oils, and is characterized by activation of the general control of amino acid biosynthesis (GAAC). Furthermore, NCR and GAAC appear interlinked, since expression of the GCN4 gene encoding the transcription factor that mediates GAAC is subject to NCR. We also observed that several transcriptional-regulation systems are active under a wider range of nitrogen supply conditions than anticipated. Other transcriptional-regulation systems acting on genes not involved in nitrogen metabolism, e.g., the pleiotropic-drug resistance and the unfolded-protein response systems, also respond to nitrogen. We have completed the lists of target genes of several nitrogen-sensitive regulons and have used sequence comparison tools to propose functions for about 20 orphan genes. Similar studies conducted for other nutrients should provide a more complete view of alternative metabolic pathways in yeast and contribute to the attribution of functions to many other orphan genes.