Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluca Francese is active.

Publication


Featured researches published by Gianluca Francese.


BMC Plant Biology | 2014

An association mapping approach to identify favourable alleles for tomato fruit quality breeding

Valentino Ruggieri; Gianluca Francese; Adriana Sacco; Antonietta D’Alessandro; Maria Manuela Rigano; Mario Parisi; Marco Milone; Teodoro Cardi; Giuseppe Mennella; Amalia Barone

BackgroundGenome Wide Association Studies (GWAS) have been recently used to dissect complex quantitative traits and identify candidate genes affecting phenotype variation of polygenic traits. In order to map loci controlling variation in tomato marketable and nutritional fruit traits, we used a collection of 96 cultivated genotypes, including Italian, Latin American, and other worldwide-spread landraces and varieties. Phenotyping was carried out by measuring ten quality traits and metabolites in red ripe fruits. In parallel, genotyping was carried out by using the Illumina Infinium SolCAP array, which allows data to be collected from 7,720 single nucleotide polymorphism (SNP) markers.ResultsThe Mixed Linear Model used to detect associations between markers and traits allowed population structure and relatedness to be evidenced within our collection, which have been taken into consideration for association analysis. GWAS identified 20 SNPs that were significantly associated with seven out of ten traits considered. In particular, our analysis revealed two markers associated with phenolic compounds, three with ascorbic acid, β-carotene and trans-lycopene, six with titratable acidity, and only one with pH and fresh weight. Co-localization of a group of associated loci with candidate genes/QTLs previously reported in other studies validated the approach. Moreover, 19 putative genes in linkage disequilibrium with markers were found. These genes might be involved in the biosynthetic pathways of the traits analyzed or might be implied in their transcriptional regulation. Finally, favourable allelic combinations between associated loci were identified that could be pyramided to obtain new improved genotypes.ConclusionsOur results led to the identification of promising candidate loci controlling fruit quality that, in the future, might be transferred into tomato genotypes by Marker Assisted Selection or genetic engineering, and highlighted that intraspecific variability might be still exploited for enhancing tomato fruit quality.


Journal of Agricultural and Food Chemistry | 2010

Characterization of Health-Related Compounds in Eggplant (Solanum melongena L.) Lines Derived from Introgression of Allied Species

Giuseppe Mennella; Giuseppe Leonardo Rotino; Marta Fibiani; Antonietta D’Alessandro; Gianluca Francese; Laura Toppino; Federica Cavallanti; Nazzareno Acciarri; Roberto Lo Scalzo

The purpose of the present study was to investigate the levels of either the nutraceutical and health-promoting compounds or the antioxidant properties of innovative eggplant (Solanum melongena L.) genotypes tolerant and/or resistant to fungi, derived from conventional and non-conventional breeding methodologies (i.e., sexual interspecific hybridization, interspecific protoplast electrofusion, androgenesis, and backcross cycles) in comparison with their allied and cultivated parents. Chemical measures of soluble refractometric residue (SRR), glycoalkaloids (solamargine and solasonine), chlorogenic acid (CA), delphinidin 3-rutinoside (D3R), total phenols (TP), polyphenoloxidase (PPO) activity, antiradical activity on superoxide anion and hydroxyl radical were carried out in raw fruit and peel of 57 eggplant advanced introgression lines (ILs), of three eggplant recurrent genotypes and of three allied species during 2005 and 2006. The majority of the ILs, obtained after several backcross cycles, showed positive characteristics with respect to the allied parents such as good levels of SRR, CA, D3R, TP, PPO activity, the scavenging activity against superoxide anion and hydroxyl radical and, in particular, significantly (p <or= 0.05) reduced concentrations of the toxic steroidal glycoalkaloids, solasonine and solamargine. These results showed the possibility to obtain new eggplant genotypes bearing useful traits derived from the allied parents (i.e., resistance/tolerance to plant pathogen fungi) together with nutraceutical and antioxidant properties typical of the cultivated species.


Frontiers in Plant Science | 2016

Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor

Teresa Docimo; Gianluca Francese; Alessandra Ruggiero; Giorgia Batelli; Monica De Palma; Laura Bassolino; Laura Toppino; Giuseppe Leonardo Rotino; Giuseppe Mennella; Marina Tucci

Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70–90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C-terminal region of SmMyb1 does not limit its capability to regulate CGA accumulation, but impairs anthocyanin biosynthesis. To our knowledge, this is the first study reporting a functional elucidation of the role of the C-term conserved domain in MYB activator proteins.


Frontiers in Plant Science | 2016

Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.)

Laura Toppino; Lorenzo Barchi; Roberto Lo Scalzo; Eristanna Palazzolo; Gianluca Francese; Marta Fibiani; Antonietta D'Alessandro; Vincenza Papa; Vito Armando Laudicina; Leo Sabatino; Laura Pulcini; Tea Sala; Nazzareno Acciarri; Ezio Portis; Sergio Lanteri; Giuseppe Mennella; Giuseppe Leonardo Rotino

Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines “305E40” × “67/3.” The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs.


Plant and Cell Physiology | 2015

Involvement of the Putative N-Acetylornithine Deacetylase from Arabidopsis thaliana in Flowering and Fruit Development

Barbara Molesini; Giuseppe Mennella; Flavio Martini; Gianluca Francese; Tiziana Pandolfini

In eukaryotic cells, the non-proteinogenic amino acid ornithine is the precursor of arginine and polyamines (PAs). The final step of ornithine biosynthesis occurs in plants via a cyclic pathway catalyzed by N(2)-acetylornithine:N-acetylglutamate acetyltransferase (NAOGAcT). An alternative route for ornithine formation, the linear pathway, has been reported for enteric bacteria and a few other organisms; the acetyl group of N(2)-acetylornithine is released as acetate by N(2)-acetylornithine deacetylase (NAOD). NAOD activity has never been demonstrated in plants, although many putative NAOD-like genes have been identified. In this investigation, we examined the effect of down-regulation of the putative Arabidopsis thaliana NAOD gene by using AtNAOD-silenced (sil#17) and T-DNA insertional mutant (atnaod) plants. The ornithine content was consistently reduced in sil#17 and atnaod plants compared with wild-type plants, suggesting that in addition to NAOGAcT action, AtNAOD contributes to the regulation of ornithine levels in plant cells. Ornithine depletion was associated with altered levels of putrescine and spermine. Reduced AtNAOD expression resulted in alterations at the reproductive level, causing early flowering and impaired fruit setting. In this regard, the highest level of AtNAOD expression was observed in unfertilized ovules. Our findings suggest that AtNAOD acts as a positive regulator of fruit setting and agree with those obtained in tomato auxin-synthesizing parthenocarpic plants, where induction of SlNAOD was associated with the onset of ovary growth. Thus, here we have uncovered the first hints of the functions of AtNAOD by connecting its role in flower and fruit development with the regulation of ornithine and PA levels.


Journal of Agricultural and Food Chemistry | 2016

Insights in the Fruit Flesh Browning Mechanisms in Solanum melongena Genetic Lines with Opposite Postcut Behavior.

Teresa Docimo; Gianluca Francese; M. De Palma; D. Mennella; Laura Toppino; R. Lo Scalzo; Giuseppe Mennella; Marina Tucci

Color, taste, flavor, nutritional value, and shelf life are important factors determining quality and healthiness of food and vegetables. These factors are strongly affected by browning processes, occurring after fruit or vegetable cutting. Characterization of ten eggplant genotypes for chlorogenic acid (CGA) content, total phenols (TP), polyphenoloxidase (PPO) activity, and browning tendency corroborated a lack of significant correlations between biochemical factors and fruit flesh browning. Further in-depth molecular and biochemical analyses of two divergent eggplant genetic lines, AM199 (high browning) and AM086 (low browning), within 30 min from cutting, highlighted differences in the physiological mechanisms underlying the browning process. qRT-PCR analysis revealed distinct activation mechanisms of CGA biosynthetic and PPO genes in the two genetic lines. Metabolic data on CGA, sugars, and ascorbic acid contents confirmed that their different browning tendency matched with different metabolic responses to cutting. Our findings suggest that the complex mechanism of flesh browning in the two eggplant genetic lines might be mediated by multiple specific factors.


Journal of the Science of Food and Agriculture | 2018

Occurrence of variable levels of health-promoting fruit compounds in horn-shaped Italian sweet pepper varieties assessed by a comprehensive approach: Health promoting compounds in horn-shaped italian sweet pepper varieties

Giuseppe Mennella; Antonietta D'Alessandro; Gianluca Francese; Daniela Fontanella; Mario Parisi; Pasquale Tripodi

BACKGROUND Cultivated pepper is a rich source of diverse bioactive compounds with potential properties related to the prevention of major degenerative and proliferative diseases. In the present study, 15 sweet pepper varieties, highly appreciated on the Italian market, were assessed for variation in the content of ascorbic acid, isoprenoids and flavonoids, as well as morpho-agronomic performances and molecular diversity. RESULTS The collection under study showed a wide variability for all traits considered. Traditional cultivars, although less productive, were characterized by a high content of β-carotene and ascorbic acid, reaching maximum concentrations of 230.5 mg kg-1 fresh weight (fw) and 2750 mg kg-1 fw, respectively. Strong correlations were demonstrated between neoxanthin and luteolins. Fruit weight was positively correlated with α-tocopherol content and negatively correlated with luteolins content. The genotyping by sequencing platform allowed the identification of 1833 single nucleotide polymorphism, which better defined the relationships among cultivars, based on provenance and improvement rate. CONCLUSIONS The present study provides an overview of the variability in the expression of fruit nutritional traits in a collection of horn-shaped pepper cultivars, integrating agronomic and molecular data. The impact for breeding and consumers is discussed.


Plant and Cell Physiology | 2016

The Arabidopsis N-Acetylornithine Deacetylase Controls Ornithine Biosynthesis via a Linear Pathway with Downstream Effects on Polyamine Levels

Barbara Molesini; Serena Zanzoni; Giuseppe Mennella; Gianluca Francese; Alessia Losa; Giuseppe Leonardo Rotino; Tiziana Pandolfini

Arabidopsis thaliana At4g17830 codes for a protein showing sequence similarity with the Escherichia coli N-acetylornithine deacetylase (EcArgE), an enzyme implicated in the linear ornithine (Orn) biosynthetic pathway. In plants, N-acetylornithine deacetylase (NAOD) activity has yet to be demonstrated; however, At4g17830-silenced and mutant (atnaod) plants display an impaired reproductive phenotype and altered foliar levels of Orn and polyamines (PAs). Here, we showed the direct connection between At4g17830 function and Orn biosynthesis, demonstrating biochemically that At4g17830 codes for a NAOD. These results are the first experimental proof that Orn can be produced in Arabidopsis via a linear pathway. In this study, to identify the role of AtNAOD in reproductive organs, we carried out a transcriptomic analysis on atnaod mutant and wild-type flowers. In the atnaod mutant, the most relevant effects were the reduced expression of cysteine-rich peptide-coding genes, known to regulate male–female cross-talk during reproduction, and variation in the expression of genes involved in nitrogen:carbon (N:C) status. The atnaod mutant also exhibited increased levels of sucrose and altered sensitivity to glucose. We hypothesize that AtNAOD participates in Orn and PA homeostasis, contributing to maintain an optimal N:C balance during reproductive development.


Journal of Agricultural and Food Chemistry | 2016

Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.).

Francesca Taranto; Gianluca Francese; Francesco Di Dato; Antonietta D’Alessandro; Barbara Greco; Vincenzo Onofaro Sanajà; Alfonso Pentangelo; Giuseppe Mennella; Pasquale Tripodi


European Journal of Plant Pathology | 2017

Activity of foliar extracts of cultivated eggplants against sclerotinia lettuce drop disease and their phytochemical profiles

Catello Pane; Gianluca Francese; Francesco Raimo; Giuseppe Mennella

Collaboration


Dive into the Gianluca Francese's collaboration.

Top Co-Authors

Avatar

Antonietta D’Alessandro

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Parisi

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar

Marta Fibiani

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar

Roberto Lo Scalzo

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Researchain Logo
Decentralizing Knowledge