Gianluca Gortan Cappellari
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianluca Gortan Cappellari.
Experimental Gerontology | 2010
Michela Zanetti; Gianluca Gortan Cappellari; Ismet Burekovic; Rocco Barazzoni; Marco Stebel; Gianfranco Guarnieri
Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect.
Journal of Nutritional Biochemistry | 2013
Gianluca Gortan Cappellari; Pasquale Losurdo; Sara Mazzucco; Emiliano Panizon; Mitja Jevnicar; Loredana Macaluso; Bruno Fabris; Rocco Barazzoni; Gianni Biolo; Renzo Carretta; Michela Zanetti
Menopause is associated with endothelial dysfunction and oxidative stress. In this condition, reduced n-3 polyunsaturated fatty acids (n-3 PUFAs) contribute to cardiovascular disease. We investigated whether treatment with n-3 PUFA reverses endothelial dysfunction and oxidative stress in experimental menopause. Thirty female rats underwent either sham-surgery or bilateral ovariectomy or bilateral ovariectomy+oral n-3 PUFA (0.8 g kg(-1) day(-1) for 2 months). Ovariectomy caused endothelial dysfunction to acetylcholine, which was reversed by superoxide scavenger Tiron. Erythrocyte membrane lipid composition was characterized by reduced n-3 PUFA total content and omega-3 index, and by concomitant increase in n-6:n-3 PUFA ratio. Ovariectomy-related oxidative stress, demonstrated by both enhanced superoxide production and 3-nitrotyrosine expression in aorta, was associated with increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit NOX-4 protein expression. Endothelial nitric oxide synthase (eNOS) functional inhibition by l-NG-nitroarginine methyl ester, protein expression and activity did not change. In ovariectomized rats, treatment with n-3 PUFA increased n-3 PUFA total content and omega-3 index and decreased n-6:n-3 PUFA ratio in erythrocyte membrane, reversed vascular oxidative stress, endothelial dysfunction, aortic 3-nitrotyrosine and markedly lowered NOX-4 protein expression; eNOS protein expression also increased, paralleled by reversal of inhibitory binding to Caveolin-1, while ex-vivo functional inhibition and NOS synthesis were unchanged. These findings demonstrate in vivo a therapeutic benefit of n-3 PUFA on menopause-associated endothelial dysfunction by reversal of alterations in membrane lipid composition induced by ovariectomy and by reduction of vascular oxidative stress. In this setting they also identify NOX-4 as a potential target to reduce oxidative stress-mediated vascular complications.
Nature Communications | 2015
Giulia Ruozi; Francesca Bortolotti; Antonella Falcione; Matteo Dal Ferro; Laura Ukovich; Antero Macedo; Lorena Zentilin; Nicoletta Filigheddu; Gianluca Gortan Cappellari; Giovanna Baldini; Marina Zweyer; Rocco Barazzoni; Andrea Graziani; Serena Zacchigna; Mauro Giacca
Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy.
Diabetes | 2016
Gianluca Gortan Cappellari; Michela Zanetti; Anna Maria Semolic; Pierandrea Vinci; Giulia Ruozi; Antonella Falcione; Nicoletta Filigheddu; Gianfranco Guarnieri; Andrea Graziani; Mauro Giacca; Rocco Barazzoni
Excess reactive oxygen species (ROS) generation and inflammation may contribute to obesity-associated skeletal muscle insulin resistance. Ghrelin is a gastric hormone whose unacylated form (UnAG) is associated with whole-body insulin sensitivity in humans and may reduce oxidative stress in nonmuscle cells in vitro. We hypothesized that UnAG 1) lowers muscle ROS production and inflammation and enhances tissue insulin action in lean rats and 2) prevents muscle metabolic alterations and normalizes insulin resistance and hyperglycemia in high-fat diet (HFD)–induced obesity. In 12-week-old lean rats, UnAG (4-day, twice-daily subcutaneous 200-µg injections) reduced gastrocnemius mitochondrial ROS generation and inflammatory cytokines while enhancing AKT-dependent signaling and insulin-stimulated glucose uptake. In HFD-treated mice, chronic UnAG overexpression prevented obesity-associated hyperglycemia and whole-body insulin resistance (insulin tolerance test) as well as muscle oxidative stress, inflammation, and altered insulin signaling. In myotubes, UnAG consistently lowered mitochondrial ROS production and enhanced insulin signaling, whereas UnAG effects were prevented by small interfering RNA–mediated silencing of the autophagy mediator ATG5. Thus, UnAG lowers mitochondrial ROS production and inflammation while enhancing insulin action in rodent skeletal muscle. In HFD-induced obesity, these effects prevent hyperglycemia and insulin resistance. Stimulated muscle autophagy could contribute to UnAG activities. These findings support UnAG as a therapeutic strategy for obesity-associated metabolic alterations.
PLOS ONE | 2014
Rocco Barazzoni; Gianluca Gortan Cappellari; A. Semolic; Enrico Chendi; M. Ius; R. Situlin; Michela Zanetti; Pierandrea Vinci; Gianfranco Guarnieri
Objective Increments in red blood cell count (RBC), hemoglobin (Hb) and hematocrit (Ht) levels are reportedly associated with higher insulin resistance (IR). Obesity may cause IR, but underlying factors remain incompletely defined, and interactions between obesity, hematological parameters and IR are incompletely understood. We therefore determined whether: 1) BMI and obesity per se are independently associated with higher RBC, hemoglobin and hematocrit; 2) hematological parameters independently predict insulin resistance in obese individuals. Design and Methods We investigated the associations between BMI, hematological parameters and insulin resistance as reflected by homeostasis model assessment (HOMA) in a general population cohort from the North-East Italy MoMa epidemiological study (M/F = 865/971, age = 49±1). Results In all subjects, age-, sex- and smoking-adjusted hematological parameters were positively associated with BMI in linear regression (P<0.05), but not after adjustment for HOMA or waist circumference (WC) and potential metabolic confounders. No associations were found between hematological parameters and BMI in lean, overweight or obese subgroups. Associations between hematological parameters and HOMA were conversely independent of BMI in all subjects and in lean and overweight subgroups (P<0.01), but not in obese subjects alone. Conclusions In a North-East Italy general population cohort, obesity per se is not independently associated with altered RBC, Hb and Ht, and the association between BMI and hematological parameters is mediated by their associations with abdominal fat and insulin resistance markers. High hematological parameters could contribute to identify insulin resistance in non-obese individual, but they do not appear to be reliable insulin resistance biomarkers in obese subjects.
Surgery for Obesity and Related Diseases | 2016
Rocco Barazzoni; Silvia Palmisano; Gianluca Gortan Cappellari; Michela Giuricin; Elisa Moretti; Pierandrea Vinci; Anna Maria Semolic; Gianfranco Guarnieri; Michela Zanetti; Nicolò de Manzini
BACKGROUND Systemic inflammation contributes to obesity-associated complications. The short pentraxin C-reactive protein (CRP) is a validated inflammatory marker, whereas long pentraxin-3 (PTX3) limits inflammation and is adaptively stimulated by proinflammatory cytokines in vitro. Severely obese (SO) patients (body mass index [BMI]>40] have the highest obesity-associated complications and increasingly undergo surgical treatment. SO-associated changes in plasma PTX3 and their interactions with systemic inflammation are, however, unknown. OBJECTIVE We sought to determine potential alterations in plasma PTX3 and their associations with changes in inflammatory markers before and after weight loss induced by laparoscopic Roux-en-Y gastric bypass (LRYGB). SETTING University hospital in Trieste, Italy. METHODS Plasma PTX3, CRP, and cytokines, including tumor necrosis factor α and interleukin 6 were measured in (1) 24 individuals with severe, class III obesity (SO; age = 42 ± 1 yr, female/male = 18/6, BMI = 45 ± 1 kg/m(2)) before and 3, 6, and 12 months after LRYGB; and (2) age- and sex-matched normal-weight (N; n = 56, BMI = 22 ± .2 kg/m(2)) or class I obese individuals (O; n = 44, BMI = 31.2 ± .3 kg/m(2)). RESULTS SO, but not O, had higher plasma PTX3 compared with N, associated with highest proinflammatory cytokines and CRP (P<.05 versus N-O). In all patients, plasma interleukin 6 and tumor necrosis factor α were associated positively with PTX3 (P<.05). Plasma CRP and proinflammatory cytokines declined during LRYGB-induced weight loss. In contrast, high PTX3 further increased and remained elevated (P<.05 versus basal). CONCLUSIONS Obesity level and energy balance modulate interactions between PTX3 and systemic inflammation. Elevated PTX3 is a novel, potentially adaptive alteration associated with proinflammatory cytokines in SO. Their differential changes conversely suggest circulating PTX3 as a novel negative inflammatory marker in SO undergoing LRYGB-induced weight loss.
Journal of Cardiovascular Pharmacology and Therapeutics | 2014
Pasquale Losurdo; Andrea Grillo; Emiliano Panizon; Gianluca Gortan Cappellari; Bruno Fabris; Moreno Bardelli; Gianni Biolo; Michela Zanetti; Renzo Carretta
Background: Menopause is associated with increased arterial stiffness, an independent marker of cardiovascular risk. Omega-3 polyunsaturated fatty acids (N3-PUFAs) are thought to have multiple cardiovascular benefits, including prevention of arterial stiffness. We investigated whether treatment with N3-PUFA prevents increase in arterial stiffness in ovariectomized rats, an animal model of experimental menopause. Methods: A total of 43 Wistar rats, 2 months old, were divided into 3 groups, control, sham surgery, normal diet (CTRL, n = 15); ovariectomy, normal diet (OVX, n = 14); and ovariectomy with N3-PUFA supplementation (0.8 g/kg/d in daily gavages administration; OVX + O3, n = 14). Two months after surgery, carotid–femoral pulse wave velocity (PWV) and arterial blood pressure (BP) were measured by carotid and femoral cannulation. Aortic morphometric measurements were performed after dissection. Results: Ovariectomy caused a significant increase in BP (P < .05), PWV (P < .0001), and elastic modulus (P = .001) compared to CTRL. After ovariectomy, N3-PUFA supplementation completely prevented increase in arterial stiffness (P < .0001 vs OVX) and BP (P < .05 vs OVX) and resulted in a significant increase in body weight and aortic thickness. Conclusions: In an experimental model of menopause, N3-PUFA supplementation prevents arterial stiffening and other vascular changes induced by ovariectomy. These results represent a therapeutic benefit of N3-PUFAs in prevention of postmenopausal cardiovascular disease.
Eating and Weight Disorders-studies on Anorexia Bulimia and Obesity | 2018
Rocco Barazzoni; Gianluca Gortan Cappellari; Maurizio Ragni; Enzo Nisoli
Obesity is a major health risk factor, and obesity-induced morbidity and complications account for huge costs for affected individuals, families, healthcare systems, and society at large. In particular, obesity is strongly associated with the development of insulin resistance, which in turn plays a key role in the pathogenesis of obesity-associated cardiometabolic complications, including metabolic syndrome components, type 2 diabetes, and cardiovascular diseases. Insulin sensitive tissues, including adipose tissue, skeletal muscle, and liver, are profoundly affected by obesity both at biomolecular and functional levels. Altered adipose organ function may play a fundamental pathogenetic role once fat accumulation has ensued. Modulation of insulin sensitivity appears to be, at least in part, related to changes in redox balance and oxidative stress as well as inflammation, with a relevant underlying role for mitochondrial dysfunction that may exacerbate these alterations. Nutrients and substrates as well as systems involved in host–nutrient interactions, including gut microbiota, have been also identified as modulators of metabolic pathways controlling insulin action. This review aims at providing an overview of these concepts and their potential inter-relationships in the development of insulin resistance, with particular regard to changes in adipose organ and skeletal muscle.
The FASEB Journal | 2017
Gianluca Gortan Cappellari; Anna Maria Semolic; Giulia Ruozi; Pierandrea Vinci; Gianfranco Guarnieri; Francesca Bortolotti; Davide Barbetta; Michela Zanetti; Mauro Giacca; Rocco Barazzoni
Unacylated ghrelin (UnAG) may lower skeletal muscle oxidative stress, inflammation, and insulin resistance in lean and obese rodents. UnAG‐induced autophagy activation may contribute to these effects, likely involving removal of dysfunctional mitochondria (mitophagy) and redox state maintenance. In chronic kidney disease (CKD) oxidative stress, inflammation and insulin resistance may negatively influence patient outcome by worsening nutritional state through muscle mass loss. Here we show in a 5/6 nephrectomy (Nx) CKD rat model that 4 d s.c. UnAG administration (200 μg twice a day) normalizes CKD‐induced loss of gastrocnemius muscle mass and a cluster of high tissue mitochondrial reactive oxygen species generation, high proinflammatory cytokines, and low insulin signaling activation. Consistent with these results, human uremic serum enhanced mitochondrial reactive oxygen species generation and lowered insulin signaling activation in C2C12 myotubes while concomitant UnAG incubation completely prevented these effects. Importantly, UnAG enhanced muscle mitophagy in vivo and silencing RNA‐mediated autophagy protein 5 silencing blocked UnAG activities in myotubes. UnAG therefore normalizes CKD‐induced skeletal muscle oxidative stress, inflammation, and low insulin signaling as well as muscle loss. UnAG effects are mediated by autophagy activation at the mitochondrial level. UnAG administration and mitophagy activation are novel potential therapeutic strategies for skeletal muscle metabolic abnormalities and their negative clinical impact in CKD.—Gortan Cappellari, G., Semolic, A., Ruozi, G., Vinci, P., Guarnieri, G., Bortolotti, F., Barbetta, D., Zanetti, M., Giacca, M., Barazzoni, R. Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. FASEB J. 31, 5159–5171 (2017). www.fasebj.org
Journal of Renal Nutrition | 2011
Michela Zanetti; Rocco Barazzoni; Gianluca Gortan Cappellari; Ismet Burekovic; Alessandra Bosutti; Alessia Stocca; Francesco Bianco; Marco Ianche; Giovanni Panzetta; Gianfranco Guarnieri
OBJECTIVE Oxidative stress and inflammation characterize hemodialysis (HD) and are associated with malnutrition, cardiovascular disease, and poor clinical outcome. p66(shc) stimulates oxidative stress and atherogenesis. The objective of the present study was to assess p66(shc) expression levels in HD and their associations with inflammatory and oxidative stress markers. DESIGN p66(shc) messenger ribonucleic acid (mRNA) was compared with systemic oxidative stress and inflammation markers in control subjects and patients on HD before and after a single HD session in a cross-sectional analysis. SETTING Outpatient hemodialysis unit. PATIENTS The study included stable HD patients (n = 21, men/women: 18/3) who were on HD 3 times per week for a minimum of 8 weeks; age-matched control subjects (n = 22, men/women:17/5). MAIN OUTCOME MEASURE mRNA levels of p66(shc), tumor necrosis factor α (TNF-α), and pentraxin 3 (PTX3), p66(shc) protein levels in white blood cells, lipid peroxidation (in the form of plasma thiobarbituric acid-reactive substance [TBARS]) and serum C-reactive protein. RESULTS In patients on dialysis, of the p66(shc), TNF-α, and PTX3 mRNAs, p66(shc) protein levels were higher (P < .05) than in control subjects, as well as plasma TBARS and C-reactive protein (P < .05). p66(shc) mRNA directly correlated with TBARS (r = 0.69, P = .0005) and with TNF-α mRNA (r = 0.63, P = .003). These associations were confirmed in the whole study population (TBARS: r = 0.541, P = .0003; TNF-α: r = 0.581, P < .0001), whereas in the control group only the positive association between p66(shc) and TNF-α was detected. TNF-α was directly correlated with PTX3 both in HD patients (r = 0.72, P = .0005) and in the whole study group (r = 0.678, P < .0001). The dialysis session affected neither p66(shc) and TNF-α mRNA nor p66(shc) protein expression, whereas it further increased (P = .002) PTX3 mRNA. As compared with predialysis levels, TBARS were reduced (P < .05) after dialysis. In these conditions, p66(shc) remained directly correlated with TNF-α (r = 0.901, P < .0001). CONCLUSIONS Increased p66(shc) gene expression correlates with TNF-α mRNA and with levels of markers of oxidative stress in HD. We suggest a novel link between HD-associated inflammation and p66(shc) gene expression contributing to systemic oxidative stress.
Collaboration
Dive into the Gianluca Gortan Cappellari's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs