Gianluca Iannitti
University of Cassino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianluca Iannitti.
Acta Materialia | 2015
Magnus Hörnqvist; N. Mortazavi; Mats Halvarsson; Andrew Ruggiero; Gianluca Iannitti; Nicola Bonora
During dynamic tensile extrusion (DTE) the material is subjected to a complex deformation history, including high strain rates, large strains and elevated temperatures. This technique provides unique means to explore material performance under extreme conditions. In this work, the microstructural evolution of 99.98% commercially pure copper during the DTE test was investigated by means of electron backscatter diffraction (EBSD). The investigation was focused on the segment of the extruded jet that remained in the die, since numerical simulation showed that material points along the longitudinal axis of such segment correspond to different stages of a common temperature compensated deformation history. Therefore, post mortem microstructure information extracted at different locations along the center line is equivalent to in situ real-time measurement during the deformation process. EBSD investigations along the center line showed a progressive elongation of the grains, and an accompanying development of a strong 〈0 0 1〉 + 〈1 1 1〉 dual fiber texture. Meta-dynamic discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was demonstrated that nucleation occurred during straining, while subsequent grain growth took place during post-deformation cooling in the die. According to strain energy minimization arguments, the recrystallization resulted in an increased 〈0 0 1〉 texture component. The critical strain for recrystallization was well predicted from a power-law dependence on the Zener–Hollomon parameter, including grain size dependence and a temperature dependent activation energy. In addition, it was shown that 〈0 0 1〉 and 〈1 1 1〉oriented grains develop different dislocation substructures during straining, exhibiting elongated cells/micro-bands and typical cell structures, respectively. The present results also confirm that dynamic tensile ductility increases with decreasing initial grain size as a result of grain refinement and lowering of dislocation and twin densities during DRX.
SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter | 2012
Nicola Bonora; Andrew Ruggiero; Gianluca Iannitti; Gabriel Testa
Recently, the continuum damage mechanics model proposed by Bonora (Eng. Fract. Mech. 58, 1997) has been updated to account for stress triaxiality effect on model parameters, (Bonora et al., AIP Conf. Proc. 1195, 2009). This model enhancement allows to predict ductile damage initiation under varying stress states (uniaxial stress, uniaxial strain, and complex load paths) and dynamic loading conditions. In this work, the model has been used to investigate ductile damage developments in Taylor anvil and symmetric Taylor impact (rod-on-rod) configuration. Although the two configurations are equivalent for right scaled impact velocities, experimental evidences show that when ductile damage occurs in rod-on-rod not necessarily also develops in Taylor anvil impact. It has been found that, in the two impact configurations, the stress triaxiality builds up differently with plastic strain leading to different conditions for ductile damage initiation. Taylor impact tests have been designed and performed with the gas-gun facility at the University of Cassino. Damage investigation results obtained on recovered samples have been compared with rod-on-rod data reported in the literature and used to validate the proposed model predictions.Recently, the continuum damage mechanics model proposed by Bonora (Eng. Fract. Mech. 58, 1997) has been updated to account for stress triaxiality effect on model parameters, (Bonora et al., AIP Conf. Proc. 1195, 2009). This model enhancement allows to predict ductile damage initiation under varying stress states (uniaxial stress, uniaxial strain, and complex load paths) and dynamic loading conditions. In this work, the model has been used to investigate ductile damage developments in Taylor anvil and symmetric Taylor impact (rod-on-rod) configuration. Although the two configurations are equivalent for right scaled impact velocities, experimental evidences show that when ductile damage occurs in rod-on-rod not necessarily also develops in Taylor anvil impact. It has been found that, in the two impact configurations, the stress triaxiality builds up differently with plastic strain leading to different conditions for ductile damage initiation. Taylor impact tests have been designed and performed with the gas...
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014
Antonio Carlucci; Nicola Bonora; Andrew Ruggiero; Gianluca Iannitti; Domenico Gentile
Bimetallic girth welds are characteristics of clad pipe technology. When dealing with propagation issues, fracture mechanics concepts usually are no longer applicable as a result of the extensive and non-homogeneous plastic deformation along bi-material interface that occur at the crack tip even below design allowables. In this study, ductile crack initiation and propagation in bi-material girth welds was investigated using a Continuum Damage Mechanics (CDM) model proposed by Bonora [1]. For the base, weld and clad metal, ductile damage model parameters have been determined by means of inverse calibration technique using fracture data obtained on smooth and round notched tensile bar specimens. Firstly, the damage model was validated predicting ductile crack growth occurring in single end notch (SEN(T)) geometry sample comparing the applied load vs crack mouth opening displacement with experimental measurements. Successively, the model was used to investigate ductile crack initiation and propagation for under clad circumferential weld crack under remote tension.
International Journal of Metalcasting | 2017
Franco Zanardi; Franco Bonollo; Giuliano Angella; Nicola Bonora; Gianluca Iannitti; Andriew Ruggiero
Some results of materials characterization activities, dedicated to classical and notch mechanics fatigue and elastoplastic properties, have already been published for some Ferritic–Pearlitic Ductile Iron, including the patented heat treated Isothermed (IDI) and Austempered Ductile Iron (ADI) grades. Others have not yet been published. The possible use of all of these results in new standards is discussed in this paper. It is proposed that new standards should provide a criterion that is able to measure the process quality that represents more accurately the actual market needs and manufacturing capabilities. Classification of grades, considered by existing standards, is based on minimum properties for strength and ductility parameters that are separately evaluated. A different approach that is based on a quality index, which considers strength and ductility all in one, is proposed. However, this new proposed approach may not be sufficient to provide a satisfactory classification for the ADIs. This is because their fracture mechanical behavior and machinability can be correlated with their austenite stability. It could also be insufficient for the classification of the recent High Silicon Solid Solution Strengthened Ductile Irons that exhibit a decreasing ultimate tensile strength/proof stress ratio with increasing Si. For construction steels, fracture mechanics properties are sometimes believed to be related to the Charpy impact energy. This paper introduces an innovative practical and inexpensive data analysis, performed on the tensile test curve, which appears to be a potential estimator of fracture mechanical properties, at least for ADIs, where said properties could be correlated with the austenite stability.
ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013
Nicola Bonora; Antonio Carlucci; Andrew Ruggiero; Gianluca Iannitti
Recent extensive use of Corrosion Resistance Alloy (CRA) as internal protection layer of standard carbon-steel pipes (clad and lined pipe) in the oil and gas industry requires an intensive use of bimetallic welds.Since some degree of defects in welds is inevitable, and in codes and standards (such as BS7910) the case of bi-metallic joint is usually not considered, some R&D’s activities are ongoing to define specific design guidance for an Engineering Critical Assessment (ECA) aimed at determining flaw acceptance criteria for fabrication of bimetallic joints.Based on the limited guidance in the literature, proposed procedures for ECA on CRA welds seem not cover the root/hot pass weld region, for which the requirement of “zero defect” became mandatory. As direct consequence, it penalizes the weld fabrication rate, particularly if “J-lay” or “S-Lay” methods are adopted. Furthermore, they are investigating on cases where weld material is overmatching the base metal or for a limited partial overmatching, despite for CRA welds, such conditions, seem quite difficult to be fully met, if current consumable materials present in the marked are selected.Aim of present paper is to describe how any standard ECA procedure (ordinarily used to assess carbon-steel welds) may be alternatively adopted to assess CRA welds for clad & lined pipe material, if specific conditions are respected. For this purpose a few number of elastic-plastic Finite Element Analysis (FEA) is required to identify and/or extends the validity limits which have to be met in order to be conservative in the use of selected standard procedure. Outer, inner and under clad flaws, located along the weld fusion line, were investigated. Such approach, certainly leads to a quite conservatism, but gives the advantage to provide a safe flaws acceptance criterion in root/hot pass weld, and it may be also applied for any level of weld partial overmatching condition.Despite proposed simplified approach is suitable until moderate plastic straining, it may be appropriated for any ECA on CRA pipe when “J-lay” or “S-lay” installation method is adopted, and/or for many riser’s configuration, and/or for several flowline routing also if exposed to post-buckling condition. It is demonstrated that the proposed simplified approach, when applied under moderate plastic strain conditions, provides accurate J-integral solutions compared to the complex method as proposed by current R&D.Copyright
SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter | 2012
Gianluca Iannitti; Nicola Bonora; Andrew Ruggiero; Simone Dichiaro
In this work, a constitutive modeling that couples plasticity, grain size evolution (due to plastic deformation and dynamic recrystallization) and ductile damage has been developed. The effect of grain size on the material yield stress (Hall-Petch) and on the melting temperature has been considered. The model has been used to investigate computationally the behavior of high purity copper in dynamic tensile extrusion test (DTE). An extensive numerical simulation work, using implicit finite element code with direct integration, has been performed and the results have been compared with available experimental data. The major finding is that the proposed model is capable to predict most of the observed features such as the increase of material ductility with the decreasing average grain size, the overall number and size of fragments and the average grain size distribution in the fragment trapped into the dime.
Journal of Physics: Conference Series | 2014
Gianluca Iannitti; Nicola Bonora; Andrew Ruggiero; Gabriel Testa
At equivalent impact velocity, pressure in Taylor and ROR impact experiment is not the same and this reflects in the resulting condition for ductile damage development. In this work, finite element parametric simulation was performed to investigate pressure wave development as a function of material and target work hardening curve. Using the Bonora damage model, the impact velocity necessary for generating ductile damage in high purity copper was assessed. Taylor and ROR experiments were performed at different equivalent impact velocities and metallographic investigation were performed on impacted samples in order to validate damage model predictions. Results seems to indicate that ROR configuration is more appropriate for 2damage model validation while the Taylor anvil is more suitable for strength model assessment.
Bulletin of the American Physical Society | 2009
Nicola Bonora; Andrew Ruggiero; Luca Esposito; Gianluca Iannitti
In the framework of CDM, the evolution of the plastic strain, at which damage processes initiates, as a function of stress triaxiality, making the assumption of constant damage dissipated work is derived. Based on this, the CDM model proposed by Bonora (Eng. Frac. Mech., 58, 1‐2, 1997) has been used to predict the occurrence of ductile failure at different stress triaxiality conditions, under both quasi‐static and dynamic loading conditions. This solution allows the possibility to correctly predict the conditions for which ductile damage can initiate under uniaxial strain (such as that for the flyer plate impact test) and mixed conditions such as those in the Taylor impact test. The solution offers the possibility to correlate continuum damage model parameters to micro structural features such as grain size and purity grade.
SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter | 2017
Gianluca Iannitti; Nicola Bonora; Neil Bourne; Andrew Ruggiero; Gabriel Testa
Stress triaxiality plays a major role in the nucleation and growth of ductile damage in metals and alloys. Although, the mechanisms responsible for ductile failure are the same at low and high strain rate, in impact dynamics, in addition to time resolved stress triaxiality and plastic strain accumulation, pressure also contributes to establish the condition for ductile failure to occur. In this work, ductile damage development in 1100 commercially pure aluminum was investigated by means of rod-on-rod (ROR) impact tests. Based on numerical simulations, using a continuum damage mechanics (CDM) model that accounts for the role of pressure on damage parameters and stochastic variability of such parameters, the impact velocity for no damage, incipient and fully developed damage were estimated. ROR tests at selected velocities were performed and damage distribution and extent were investigated by sectioning of soft recovered samples. Comparison between numerical simulations and experimental results is presented...
Journal of Physics: Conference Series | 2014
Andrew Ruggiero; Gianluca Iannitti; Gabriel Testa; Jérôme Limido; Jean-Luc Lacome; L Olovsson; M. Ferraro; Nicola Bonora
Fused silica is a high purity synthetic amorphous silicon dioxide characterized by low thermal expansion coefficient, excellent optical qualities and exceptional transmittance over a wide spectral range. Because of its wide use in the military industry as window material, it may be subjected to high-energy ballistic impacts. Under such dynamic conditions, post-yield response of the ceramic as well as the strain rate related effects become significant and should be accounted for in the constitutive modelling. In this study, the Johnson-Holmquist (J-H) model parameters have been identified by inverse calibration technique, on selected validation test configurations, according to the procedure described hereafter. Numerical simulations were performed with LS-DYNA and IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. In order to overcome numerical drawbacks associated with element erosion, a modified version of the J-H model is proposed.