Gianluca Severi
Université Paris-Saclay
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianluca Severi.
Nature Genetics | 2008
Rosalind Eeles; Zsofia Kote-Jarai; Graham G. Giles; Ali Amin Al Olama; Michelle Guy; Sarah Jugurnauth; Shani Mulholland; Daniel Leongamornlert; Stephen M. Edwards; Jonathan Morrison; Helen I. Field; Melissa C. Southey; Gianluca Severi; Jenny Donovan; Freddie C. Hamdy; David P. Dearnaley; Kenneth Muir; Charmaine Smith; Melisa Bagnato; Audrey Ardern-Jones; Amanda L. Hall; Lynne T. O'Brien; Beatrice N. Gehr-Swain; Rosemary A. Wilkinson; Angie Cox; Sarah Lewis; Paul M. Brown; Sameer Jhavar; Malgorzata Tymrakiewicz; Artitaya Lophatananon
Prostate cancer is the most common cancer affecting males in developed countries. It shows consistent evidence of familial aggregation, but the causes of this aggregation are mostly unknown. To identify common alleles associated with prostate cancer risk, we conducted a genome-wide association study (GWAS) using blood DNA samples from 1,854 individuals with clinically detected prostate cancer diagnosed at ≤60 years or with a family history of disease, and 1,894 population-screened controls with a low prostate-specific antigen (PSA) concentration (<0.5 ng/ml). We analyzed these samples for 541,129 SNPs using the Illumina Infinium platform. Initial putative associations were confirmed using a further 3,268 cases and 3,366 controls. We identified seven loci associated with prostate cancer on chromosomes 3, 6, 7, 10, 11, 19 and X (P = 2.7 × 10−8 to P = 8.7 × 10−29). We confirmed previous reports of common loci associated with prostate cancer at 8q24 and 17q. Moreover, we found that three of the newly identified loci contain candidate susceptibility genes: MSMB, LMTK2 and KLK3.
PLOS Medicine | 2010
Fiona Blows; Kristy Driver; Marjanka K. Schmidt; Annegien Broeks; Flora E. van Leeuwen; Jelle Wesseling; Maggie Cheang; Karen A. Gelmon; Torsten O. Nielsen; Carl Blomqvist; Päivi Heikkilä; Tuomas Heikkinen; Heli Nevanlinna; Lars A. Akslen; Louis R. Bégin; William D. Foulkes; Fergus J. Couch; Xianshu Wang; Vicky Cafourek; Janet E. Olson; Laura Baglietto; Graham G. Giles; Gianluca Severi; Catriona McLean; Melissa C. Southey; Emad A. Rakha; Andrew R. Green; Ian O. Ellis; Mark E. Sherman; Jolanta Lissowska
Paul Pharoah and colleagues evaluate the prognostic significance of immunohistochemical subtype classification in more than 10,000 breast cancer cases with early disease, and examine the influence of a patients survival time on the prediction of future survival.
Urology | 2001
Georg Bartsch; Wolfgang Horninger; Helmut Klocker; Andreas Reissigl; Wilhelm Oberaigner; Dieter Schönitzer; Gianluca Severi; Chris Robertson; Peter Boyle
Objectives. To monitor the impact of screening in a natural experiment by comparing prostate cancer mortality in Tyrol, where prostate-specific antigen (PSA) testing was introduced at no charge, with the rest of Austria, where it was not introduced. Methods. In 1993, PSA testing was made freely available to men aged 45 to 75 years in the Federal State of Tyrol, Austria. At least two thirds of all men in this age range have been tested at least once during the first 5 years of the study. Initially, only total PSA was measured, but free PSA measurement was added in 1995. The IMX assay was used. Digital rectal examination was not part of the screening examination. Results. Significant migration to lower stages has been observed since the introduction of this screening program. A reduction in mortality rates in the rest of Austria from 1993 onward has occurred, with the reduction in Tyrol much greater; the mortality remained fairly constant between 1993 and 1995 and subsequently fell. The trends in prostate cancer mortality rates since 1993 differ significantly between Tyrol (P = 0.006) and the rest of Austria. On the basis of the age-specific death rates averaged from 1986 to 1990, the difference between the number of expected and observed deaths from prostate cancer in Tyrol was 22 in the group aged 40 to 79 years in 1998 and 18 the following year. Conclusions. These findings are consistent with the hypothesis that the policy of making PSA testing freely available, and the wide acceptance by men in the population, is associated with a reduction in prostate cancer mortality in an area in which urology services and radiotherapy are available freely to all patients. It is our opinion that most of this decline is likely to be due to aggressive downstaging and successful treatment and that any contribution from detecting and treating early cancers will only become apparent in the years to come.
Annals of Internal Medicine | 2008
Andrew W. Roddam; Naomi E. Allen; Paul N. Appleby; Timothy J. Key; Luigi Ferrucci; H. Ballentine Carter; E. Jeffrey Metter; Chu Chen; Noel S. Weiss; Annette L. Fitzpatrick; Ann W. Hsing; James V. Lacey; Kathy J. Helzlsouer; Sabina Rinaldi; Elio Riboli; Rudolf Kaaks; Joop A. M. J. L. Janssen; Mark F. Wildhagen; Fritz H. Schröder; Elizabeth A. Platz; Michael Pollak; Edward Giovannucci; Catherine Schaefer; Charles P. Quesenberry; Joseph H. Vogelman; Gianluca Severi; Dallas R. English; Graham G. Giles; Pär Stattin; Göran Hallmans
Context Insulin-like growth factors (IGFs) and IGF binding proteins may be associated with some cancers. Contribution This reanalysis of individual patient data from 12 studies of the association between IGFs and IGF binding proteins and prostate cancer suggests that higher levels of serum IGF-I are associated with higher risk for prostate cancer. Caution The 12 studies varied in the types of patients they studied and in how they measured IGFs. Implication High IGF-I levels seem to be a risk factor for prostate cancer. The Editors Prostate cancer is one of the most common types of cancer in men, yet few risk factors for the disease, other than age, race, and a family history, have been established (1, 2). Insulin-like growth factors (IGFs) and their associated binding proteins (IGFBPs) have been the subject of many epidemiologic investigations of prostate cancer because they are known to help regulate cell proliferation, differentiation, and apoptosis (3). Although results from some, but not all, studies suggest an association between IGFs and IGFBPs and prostate cancer risk, there has been much uncertainty about its consistency and magnitude. A previous meta-analysis that included only 3 prospective studies suggested that high levels could be associated with more than a 2-fold increase in risk (4), although recent studies have suggested the risk is lower. Furthermore, given that these peptides are correlated with each other, uncertainty remains about any observed relationships. The individual studies are rarely large enough to allow proper mutual adjustment for these correlated factors, and they are insufficiently powered to investigate the consistency of their findings in key subgroups (for example, stage and grade of disease). Such analyses are important because studies have suggested that IGF-I might be more associated with advanced than with localized disease (5, 6). The Endogenous Hormones and Prostate Cancer Collaborative Group was established to conduct collaborative reanalyses of individual data from prospective studies on the relationships between circulating levels of sex hormones and IGFs and subsequent prostate cancer risk. Results for the sex hormones have been reported elsewhere and show no statistically significant relation between androgen or estrogen levels in men and the subsequent risk for prostate cancer (7). We report results for concentrations of IGFs and IGFBPs. Methods Participants The Endogenous Hormones and Prostate Cancer Collaborative Group is described in detail elsewhere (7). In brief, the group invited principal investigators of all studies, found by searching PubMed, Web of Science, and CancerLit, that provided data on circulating concentrations of sex steroids, IGFs or IGFBPs, and prostate cancer risk by using prospectively collected blood samples to join the collaboration. Thirteen studies collected data on circulating IGF concentrations and the subsequent risk for prostate cancer (5, 6, 820), of which 1 contributed only data on sex hormones (20). Eleven of the studies used a matched casecontrol design nested within a prospective cohort study (5, 6, 812, 16, 19) or a randomized trial (1315, 17). One study used a casecohort design (18) and was converted into a matched casecontrol design by randomly matching up to 3 control participants to each case patient by age at recruitment, time between blood collection and diagnosis, time of blood draw, and race. (Table 1 provides a full description of the studies and matching criteria used.) Most of the prospective studies were population-based, with the exception of 1 based on health plan members (9), 1 that recruited male health professionals (16), and 1 that was a combination of an intervention study and a monitoring study for cardiovascular disease (6, 10). Two of the randomized trials did not have prostate cancer as a primary end point (5, 8, 15); the other 2 were based within a screening trial (13) or were about treatment of prostate-specific antigen (PSA)detected prostate cancer (14). Table 1. Study Characteristics Individual participant data were available for age; height; weight; smoking status; alcohol consumption; marital status; socioeconomic status (assessed by educational achievement); race; concentrations of IGFs, IGFBPs, and endogenous sex steroids; and PSA level. Information sought about prostate cancer included date of diagnosis, stage and grade of disease, and method of case patient ascertainment. Some studies (5, 6, 8, 10, 16) published more than 1 article or performed assays at different times on the association between IGFs and prostate cancer risk, sometimes with different matched casecontrol sets, laboratory measurements, and durations of follow-up. For each study, we created a single data set in which each participant appeared only once. In our analysis, we treated any participant who appeared in a study as both a control participant and a case patient as a case patient only. We removed matched set identifiers, and we generated a series of strata (equivalent to matched sets) in which participants in each study were grouped according to age at recruitment (2-year age bands) and date of recruitment (by year), because these matching criteria were common to most studies (Table 1). The number of strata used in the collaborative analysis was slightly less than that of matched sets used in the original analyses. To ensure that this process did not introduce any bias, we checked that the results for each study, using the original matched sets, were the same as those using the strata described above. Tumors were classified as advanced if the tumor was described as extending beyond the prostate capsule (T3/T4), and/or there was lymph node involvement (N1/N2/N3), and/or there were distant metastases (M1); tumors were classified as localized if they were T0/T1/T2 and N0/NX and M0. We classified tumors as high-grade if they had a Gleason score of 7 or more or were moderately poorly or poorly differentiated; otherwise, they were classified as low-grade. Statistical Analysis We calculated partial correlation coefficients between log-transformed IGF and IGFBP concentrations among control participants, adjusted for age at blood collection (<50, 50 to 59, 60 to 69, or 70 years) and study. For each IGF and IGFBP, we categorized men into quintiles of IGF and IGFBP serum concentrations, with cut-points defined by the study-specific quintiles of the distribution within control participants. For studies with more than 1 publication or in which the serum assays were done at different times, resulting in different absolute levels of IGFs (5, 6, 8, 10, 16), we calculated cut-points separately for each substudy. We used a conditional logistic regression stratified by study, age at recruitment (2-year age bands), and date of recruitment (single year) as our main method of analysis. To provide a summary measure of risk, we calculated a linear trend by scoring the quintiles of the serum IGF or IGFBP concentrations as 0, 0.25, 0.5, 0.75, and 1. Under the assumption of linearity, a unit change in this trend variable is equivalent to the odds ratio (OR) comparing the highest with the lowest quintile. All results are unadjusted for participant characteristics, except for those controlled by the stratification variables. We examined the possible influence of 5 participant characteristics by adjusting the relevant conditional logistic regression models for body mass index (BMI) (<22.5, 22.5 to 24.9, 25.0 to 27.4, 27.5 to 29.9, or >30 kg/m2), marital status (married or cohabiting, or not married or cohabiting), educational status (did not attend college or university, or attended college or university), smoking (never, previous, or current), and alcohol consumption (<10 or 10 g/d). We excluded participants from the analysis if they had a missing value for the characteristic under examination. We assessed heterogeneity in linear trends among studies by using a chi-square statistic to test whether the study-specific ORs were statistically different from the overall OR (21). Heterogeneity among studies was also quantified by calculating the H and I 2 statistics (22). To test whether the linear trend OR estimates for each IGF and IGFBP varied according to case patient characteristics, we estimated a series of subsets for each characteristic: stage at diagnosis (localized or advanced), grade at diagnosis (low or high), year of diagnosis (before 1990, 1990 to 1994, or 1995 onward; these year cutoffs were chosen to attempt to reflect differences in the use of the PSA test for cancer detection), age at diagnosis (<60, 60 to 69, or 70 years), and time between blood collection and diagnosis (<3, 3 to 6, or 7 years). We excluded case patients from the analyses of stage and grade at diagnosis if the relevant information was not available. For each of these case patient characteristics, we calculated a heterogeneity chi-square statistic to assess whether the estimated ORs statistically differed from each other (21). To assess whether the OR estimate of the linear trend for each IGF or IGFBP varied according to PSA level at recruitment (<2 g/L or 2 g/L), we entered an interaction term into the conditional logistic regression model for each IGF or IGFBP, and we tested the statistical significance of the interaction term with a likelihood ratio test. Statistical significance was set at the 5% level. All statistical tests were 2-sided. All statistical analyses were done with Stata, version 9.0 (StataCorp, College Station, Texas). Results Table 1 shows the characteristics of the studies. The 12 prospective studies included approximately 3700 case patients with prostate cancer and 5200 control participants. Insulin-like growth factor I and IGFBP-III measurements were available for all and 3600 case patients, respectively. However, IGF-II and IGFBP-II measurements were available for only 379 and 419 case patients, respectively (Table 2). Mean age at blood collection
Nature Genetics | 2009
Ali Amin Al Olama; Zsofia Kote-Jarai; Graham G. Giles; Michelle Guy; Jonathan Morrison; Gianluca Severi; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Sameer Jhavar; Ed Saunders; John L. Hopper; Melissa C. Southey; Kenneth Muir; Dallas R. English; David P. Dearnaley; Audrey Ardern-Jones; Amanda L. Hall; Lynne T. O'Brien; Rosemary A. Wilkinson; Emma J. Sawyer; Artitaya Lophatananon; Uk Prostate testing for cancer; A. Horwich; Robert Huddart; Vincent Khoo; Chris Parker; Christopher Woodhouse; Alan Thompson; Tim Christmas; Chris Ogden
Previous studies have identified multiple loci on 8q24 associated with prostate cancer risk. We performed a comprehensive analysis of SNP associations across 8q24 by genotyping tag SNPs in 5,504 prostate cancer cases and 5,834 controls. We confirmed associations at three previously reported loci and identified additional loci in two other linkage disequilibrium blocks (rs1006908: per-allele OR = 0.87, P = 7.9 × 10−8; rs620861: OR = 0.90, P = 4.8 × 10−8). Eight SNPs in five linkage disequilibrium blocks were independently associated with prostate cancer susceptibility.
Nature Genetics | 2009
Honglin Song; Susan J. Ramus; Jonathan Tyrer; Kelly L. Bolton; Aleksandra Gentry-Maharaj; Eva Wozniak; Hoda Anton-Culver; Jenny Chang-Claude; Daniel W. Cramer; Richard A. DiCioccio; Thilo Dörk; Ellen L. Goode; Marc T. Goodman; Joellen M. Schildkraut; Thomas A. Sellers; Laura Baglietto; Matthias W. Beckmann; Jonathan Beesley; Jan Blaakær; Michael E. Carney; Stephen J. Chanock; Zhihua Chen; Julie M. Cunningham; Ed Dicks; Jennifer A. Doherty; Matthias Dürst; Arif B. Ekici; David Fenstermacher; Brooke L. Fridley; Graham G. Giles
Epithelial ovarian cancer has a major heritable component, but the known susceptibility genes explain less than half the excess familial risk. We performed a genome-wide association study (GWAS) to identify common ovarian cancer susceptibility alleles. We evaluated 507,094 SNPs genotyped in 1,817 cases and 2,353 controls from the UK and ∼2 million imputed SNPs. We genotyped the 22,790 top ranked SNPs in 4,274 cases and 4,809 controls of European ancestry from Europe, USA and Australia. We identified 12 SNPs at 9p22 associated with disease risk (P < 10−8). The most significant SNP (rs3814113; P = 2.5 × 10−17) was genotyped in a further 2,670 ovarian cancer cases and 4,668 controls, confirming its association (combined data odds ratio (OR) = 0.82, 95% confidence interval (CI) 0.79–0.86, Ptrend = 5.1 × 10−19). The association differs by histological subtype, being strongest for serous ovarian cancers (OR 0.77, 95% CI 0.73–0.81, Ptrend = 4.1 × 10−21).
British Journal of Cancer | 2011
Timothy J. Key; Paul N. Appleby; Gillian Reeves; Andrew W. Roddam; Kathy J. Helzlsouer; Anthony J. Alberg; Dana E. Rollison; Joanne F. Dorgan; Louise A. Brinton; Kim Overvad; Rudolph Kaaks; Antonia Trichopoulou; Françoise Clavel-Chapelon; Salvatore Panico; Eric J. Duell; Petra H. Peeters; S. Rinaldi; Ian S. Fentiman; Mitch Dowsett; Jonas Manjer; Per Lenner; G. Hallmans; Laura Baglietto; Dallas R. English; Graham G. Giles; John L. Hopper; Gianluca Severi; Howard A. Morris; Susan E. Hankinson; Shelley S. Tworoger
Background:Breast cancer risk for postmenopausal women is positively associated with circulating concentrations of oestrogens and androgens, but the determinants of these hormones are not well understood.Methods:Cross-sectional analyses of breast cancer risk factors and circulating hormone concentrations in more than 6000 postmenopausal women controls in 13 prospective studies.Results:Concentrations of all hormones were lower in older than younger women, with the largest difference for dehydroepiandrosterone sulphate (DHEAS), whereas sex hormone-binding globulin (SHBG) was higher in the older women. Androgens were lower in women with bilateral ovariectomy than in naturally postmenopausal women, with the largest difference for free testosterone. All hormones were higher in obese than lean women, with the largest difference for free oestradiol, whereas SHBG was lower in obese women. Smokers of 15+ cigarettes per day had higher levels of all hormones than non-smokers, with the largest difference for testosterone. Drinkers of 20+ g alcohol per day had higher levels of all hormones, but lower SHBG, than non-drinkers, with the largest difference for DHEAS. Hormone concentrations were not strongly related to age at menarche, parity, age at first full-term pregnancy or family history of breast cancer.Conclusion:Sex hormone concentrations were strongly associated with several established or suspected risk factors for breast cancer, and may mediate the effects of these factors on breast cancer risk.
British Journal of Cancer | 2010
Sarah-Jane Dawson; Nikita Makretsov; Fiona Blows; Kristy Driver; Elena Provenzano; J. Le Quesne; Laura Baglietto; Gianluca Severi; Graham G. Giles; Catriona McLean; Grace Callagy; Andrew R. Green; Ian O. Ellis; Karen A. Gelmon; Gulisa Turashvili; Scy Leung; Sam Aparicio; David Huntsman; Carlos Caldas; P Pharoah
BACKGROUND Breast cancer is heterogeneous and the existing prognostic classifiers are limited in accuracy, leading to unnecessary treatment of numerous women. B-cell lymphoma 2 (BCL2), an antiapoptotic protein, has been proposed as a prognostic marker, but this effect is considered to relate to oestrogen receptor (ER) status. This study aimed to test the clinical validity of BCL2 as an independent prognostic marker. METHODS Five studies of 11 212 women with early-stage breast cancer were analysed. Individual patient data included tumour size, grade, lymph node status, endocrine therapy, chemotherapy and mortality. BCL2, ER, progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) levels were determined in all tumours. A Cox model incorporating the time-dependent effects of each variable was used to explore the prognostic significance of BCL2. RESULTS In univariate analysis, ER, PR and BCL2 positivity was associated with improved survival and HER2 positivity with inferior survival. For ER and PR this effect was time dependent, whereas for BCL2 and HER2 the effect persisted over time. In multivariate analysis, BCL2 positivity retained independent prognostic significance (hazard ratio (HR) 0.76, 95% confidence interval (CI) 0.66-0.88, P<0.001). BCL2 was a powerful prognostic marker in ER- (HR 0.63, 95% CI 0.54-0.74, P<0.001) and ER+ disease (HR 0.56, 95% CI 0.48-0.65, P<0.001), and in HER2- (HR 0.55, 95% CI 0.49-0.61, P<0.001) and HER2+ disease (HR 0.70, 95% CI 0.57-0.85, P<0.001), irrespective of the type of adjuvant therapy received. Addition of BCL2 to the Adjuvant! Online prognostic model, for a subset of cases with a 10-year follow-up, improved the survival prediction (P=0.0039). CONCLUSIONS BCL2 is an independent indicator of favourable prognosis for all types of early-stage breast cancer. This study establishes the rationale for introduction of BCL2 immunohistochemistry to improve prognostic stratification. Further work is now needed to ascertain the exact way to apply BCL2 testing for risk stratification and to standardise BCL2 immunohistochemistry for this application.Background:Breast cancer is heterogeneous and the existing prognostic classifiers are limited in accuracy, leading to unnecessary treatment of numerous women. B-cell lymphoma 2 (BCL2), an antiapoptotic protein, has been proposed as a prognostic marker, but this effect is considered to relate to oestrogen receptor (ER) status. This study aimed to test the clinical validity of BCL2 as an independent prognostic marker.Methods:Five studies of 11 212 women with early-stage breast cancer were analysed. Individual patient data included tumour size, grade, lymph node status, endocrine therapy, chemotherapy and mortality. BCL2, ER, progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) levels were determined in all tumours. A Cox model incorporating the time-dependent effects of each variable was used to explore the prognostic significance of BCL2.Results:In univariate analysis, ER, PR and BCL2 positivity was associated with improved survival and HER2 positivity with inferior survival. For ER and PR this effect was time dependent, whereas for BCL2 and HER2 the effect persisted over time. In multivariate analysis, BCL2 positivity retained independent prognostic significance (hazard ratio (HR) 0.76, 95% confidence interval (CI) 0.66–0.88, P<0.001). BCL2 was a powerful prognostic marker in ER− (HR 0.63, 95% CI 0.54–0.74, P<0.001) and ER+ disease (HR 0.56, 95% CI 0.48–0.65, P<0.001), and in HER2− (HR 0.55, 95% CI 0.49–0.61, P<0.001) and HER2+ disease (HR 0.70, 95% CI 0.57–0.85, P<0.001), irrespective of the type of adjuvant therapy received. Addition of BCL2 to the Adjuvant! Online prognostic model, for a subset of cases with a 10-year follow-up, improved the survival prediction (P=0.0039).Conclusions:BCL2 is an independent indicator of favourable prognosis for all types of early-stage breast cancer. This study establishes the rationale for introduction of BCL2 immunohistochemistry to improve prognostic stratification. Further work is now needed to ascertain the exact way to apply BCL2 testing for risk stratification and to standardise BCL2 immunohistochemistry for this application.
Cancer Epidemiology, Biomarkers & Prevention | 2006
Gianluca Severi; Howard A. Morris; Robert J. MacInnis; Dallas R. English; Wayne D. Tilley; John L. Hopper; Peter Boyle; Graham G. Giles
Epidemiologic studies have failed to support the hypothesis that circulating androgens are positively associated with prostate cancer risk and some recent studies have even suggested that high testosterone levels might be protective particularly against aggressive cancer. We tested this hypothesis by measuring total testosterone, androstanediol glucuronide, androstenedione, DHEA sulfate, estradiol, and sex hormone–binding globulin in plasma collected at baseline in a prospective cohort study of 17,049 men. We used a case-cohort design, including 524 cases diagnosed during a mean 8.7 years follow-up and a randomly sampled subcohort of 1,859 men. The association between each hormone level and prostate cancer risk was tested using Cox models adjusted for country of birth. The risk of prostate cancer was ∼30% lower for a doubling of the concentration of estradiol but the evidence was weak (Ptrend = 0.07). None of the other hormones was associated with overall prostate cancer (Ptrend ≥ 0.3). None of the hormones was associated with nonaggressive prostate cancer (all Ptrend ≥ 0.2). The hazard ratio [HR; 95% confidence interval (95% CI)] for aggressive cancer almost halved for a doubling of the concentration of testosterone (HR, 0.55; 95% CI, 0.32-0.95) and androstenedione (HR, 0.51; 95% CI, 0.31-0.83), and was 37% lower for a doubling of the concentration of DHEA sulfate (HR, 0.63; 95% CI, 0.46-0.87). Similar negative but nonsignificant linear trends in risk for aggressive cancer were obtained for free testosterone, estradiol, and sex hormone–binding globulin (Ptrend = 0.06, 0.2, and 0.1, respectively). High levels of testosterone and adrenal androgens are thus associated with reduced risk of aggressive prostate cancer but not with nonaggressive disease. (Cancer Epidemiol Biomarkers Prev 2006;15(1):86–91)
Urologic Clinics of North America | 2003
Peter Boyle; Gianluca Severi; Graham G. Giles
Despite it being one of the commonest forms of cancer, relatively little is known about the aetiology of cancer of the prostate. In 1980 it was estimated that prostatic cancer was the fifth most frequent cancer in men, with an estimated 235,800 cases occurring annually worldwide [1]. The incidence continues to increase [2] and incidence and mortality rates of cancer of the prostate demonstrate wide international variation with, for example, a 120-fold difference present between areas of highest and lowest incidence, according to the most recently available statistics [3]. Increases continue to take place in the incidence of prostate cancer in Scotland and Connecticut [4] as well as the Scandinavian countries [5].