Gianluca Sgarbi
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianluca Sgarbi.
Biochimica et Biophysica Acta | 2010
Giancarlo Solaini; Alessandra Baracca; Giorgio Lenaz; Gianluca Sgarbi
It is now clear that mitochondrial defects are associated with a large variety of clinical phenotypes. This is the result of the mitochondrias central role in energy production, reactive oxygen species homeostasis, and cell death. These processes are interdependent and may occur under various stressing conditions, among which low oxygen levels (hypoxia) are certainly prominent. Cells exposed to hypoxia respond acutely with endogenous metabolites and proteins promptly regulating metabolic pathways, but if low oxygen levels are prolonged, cells activate adapting mechanisms, the master switch being the hypoxia-inducible factor 1 (HIF-1). Activation of this factor is strictly bound to the mitochondrial function, which in turn is related with the oxygen level. Therefore in hypoxia, mitochondria act as [O2] sensors, convey signals to HIF-1 directly or indirectly, and contribute to the cell redox potential, ion homeostasis, and energy production. Although over the last two decades cellular responses to low oxygen tension have been studied extensively, mechanisms underlying these functions are still indefinite. Here we review current knowledge of the mitochondrial role in hypoxia, focusing mainly on their role in cellular energy and reactive oxygen species homeostasis in relation with HIF-1 stabilization. In addition, we address the involvement of HIF-1 and the inhibitor protein of F1F0 ATPase in the hypoxia-induced mitochondrial autophagy.
Biochimica et Biophysica Acta | 2011
Giancarlo Solaini; Gianluca Sgarbi; Alessandra Baracca
Evidence suggests that mitochondrial metabolism may play a key role in controlling cancer cells life and proliferation. Recent evidence also indicates how the altered contribution of these organelles to metabolism and the resistance of cancer mitochondria against apoptosis-associated permeabilization are closely related. The hallmarks of cancer growth, increased glycolysis and lactate production in tumours, have raised attention due to recent observations suggesting a wide spectrum of oxidative phosphorylation deficit and decreased availability of ATP associated with malignancies and tumour cell expansion. More specifically, alteration in signal transduction pathways directly affects mitochondrial proteins playing critical roles in controlling the membrane potential as UCP2 and components of both MPTP and oxphos complexes, or in controlling cells life and death as the Bcl-2 proteins family. Moreover, since mitochondrial bioenergetics and dynamics, are also involved in processes of cells life and death, proper regulation of these mitochondrial functions is crucial for tumours to grow. Therefore a better understanding of the key pathophysiological differences between mitochondria in cancer cells and in their non-cancer surrounding tissue is crucial to the finding of tools interfering with these peculiar tumour mitochondrial functions and will disclose novel approaches for the prevention and treatment of malignant diseases. Here, we review the peculiarity of tumour mitochondrial bioenergetics and the mode it is linked to the cell metabolism, providing a short overview of the evidence accumulated so far, but highlighting the more recent advances.
Biochimica et Biophysica Acta | 2010
Giorgio Lenaz; Alessandra Baracca; Giovanna Barbero; Christian Bergamini; Maria Elena Dalmonte; Marianna Del Sole; Marco Faccioli; Anna Ida Falasca; Romana Fato; Maria Luisa Genova; Gianluca Sgarbi; Giancarlo Solaini
Recent investigations by native gel electrophoresis showed the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis demonstrated that Complex I and Complex III in mammalian mitochondria kinetically behave as a single unit with control coefficients approaching unity for each component, suggesting the existence of substrate channeling within the super-complex. The formation of this supramolecular unit largely depends on the lipid content and composition of the inner mitochondrial membrane. The function of the super-complexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes, particularly Complex I, and in preventing excess oxygen radical formation. There is increasing evidence that disruption of the super-complex organization leads to functional derangements responsible for pathological changes, as we have found in K-ras-transformed fibroblasts.
Biochimica et Biophysica Acta | 2010
Alessandra Baracca; Ferdinando Chiaradonna; Gianluca Sgarbi; Giancarlo Solaini; Lilia Alberghina; Giorgio Lenaz
Many cancer cells are characterized by high rate of glycolysis and reduced rate of aerobic respiration, whose mechanism is still elusive. Here we investigate the down-regulation of oxidative phosphorylation (OXPHOS) in K-ras transformed mouse fibroblasts as compared to a control counterpart. Transcriptional analysis showed different expression levels of several OXPHOS nuclear genes in the two cell lines. In particular, during the exponential growth phase most genes encoding proteins of Complex I were expressed at lower levels in transformed cells. Consistently, a significant decrease of Complex I content was found in transformed cells. Moreover, analysis of NAD-dependent respiration and ATP synthesis indicated a strong decrease of Complex I activity in the mitochondria from neoplastic cells, that was confirmed by direct assay of the enzyme redox activity. At variance, succinate-dependent respiration and ATP synthesis were not significantly affected. Taken together, our results provide the new insight that the reduction of respiration observed in K-ras transformed cells is specifically due to a Complex I activity decrease.
Human Molecular Genetics | 2008
Marco Spinazzi; Silvia Cazzola; Mario Bortolozzi; Alessandra Baracca; Emanuele Loro; Alberto Casarin; Giancarlo Solaini; Gianluca Sgarbi; Gabriella Casalena; Giovanna Cenacchi; Adriana Malena; Christian Frezza; Franco Carrara; Corrado Angelini; Luca Scorrano; Leonardo Salviati; Lodovica Vergani
Autosomal dominant optic atrophy (ADOA), the commonest cause of inherited optic atrophy, is caused by mutations in the ubiquitously expressed gene optic atrophy 1 (OPA1), involved in fusion and biogenesis of the inner membrane of mitochondria. Bioenergetic failure, mitochondrial network abnormalities and increased apoptosis have all been proposed as possible causal factors. However, their relative contribution to pathogenesis as well as the prominent susceptibility of the retinal ganglion cell (RGC) in this disease remains uncertain. Here we identify a novel deletion of OPA1 gene in the GTPase domain in three patients affected by ADOA. Muscle biopsy of the patients showed neurogenic atrophy and abnormal morphology and distribution of mitochondria. Confocal microscopy revealed increased mitochondrial fragmentation in fibroblasts as well as in myotubes, where mitochondria were also unevenly distributed, with clustered organelles alternating with areas where mitochondria were sparse. These abnormalities were not associated with altered bioenergetics or increased susceptibility to pro-apoptotic stimuli. Therefore, changes in mitochondrial shape and distribution can be independent of other reported effects of OPA1 mutations, and therefore may be the primary cause of the disease. The arrangement of mitochondria in RGCs, which degenerate in ADOA, may be exquisitely sensitive to disturbance, and this may lead to bioenergetic crisis and/or induction of apoptosis. Our results highlight the importance of mitochondrial dynamics in the disease per se, and point to the loss of the fine positioning of mitochondria in the axons of RGCs as a possible explanation for their predominant degeneration in ADOA.
Biochemical Journal | 2006
Gianluca Sgarbi; Alessandra Baracca; Giorgio Lenaz; Lucia M. Valentino; Valerio Carelli; Giancarlo Solaini
Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.
Free Radical Research | 2010
Provvidenza Maria Abruzzo; Simona di Tullio; Cosetta Marchionni; Silvia Belia; Giorgio Fanò; Sandra Zampieri; Ugo Carraro; Helmut Kern; Gianluca Sgarbi; Giorgio Lenaz; Marina Marini
Abstract Following experimental hind limb denervation in rats, this study demonstrates that oxidative stress occurs and advances an hypothesis about its origin. In fact: (i) ROS are formed; (ii) membrane lipids are oxidized; (iii) oxidized ion channels and pumps may lead to increased [Ca2+]i; all the above mentioned events increase with denervation time. In the denervated muscle, (iv) mRNA abundance of cytoprotective and anti-oxidant proteins (Hsp70, Hsp27, Sod1, Catalase, Gpx1, Gpx4, Gstm1), as well as (v) SOD1 enzymatic activity and HSP70i protein increase; (vi) an unbalance in mitochondrial OXPHOS enzymes occurs, presumably leading to excess mitochondrial ROS production; (vii) increased cPLA2α expression (mRNA) and activation (increased [Ca2+]i) may lead to increased hydroperoxides release. Since anti-oxidant defences appear inadequate to counterbalance increased ROS production with increased denervation time, an anti-oxidant therapeutic strategy seems to be advisable in the many medical conditions where the nerve-muscle connection is impaired.
Mechanisms of Ageing and Development | 1998
G. Biagini; Francesco Pallotti; Silvia Carraro; Gianluca Sgarbi; Milena Merlo Pich; Giorgio Lenaz; Fernando Anzivino; Giovanni Gualandi; Deng Xin
This study aimed to assess platelets as a possible model for screening the accumulation of mitochondrial DNA mutations, particularly during normal ageing. For this purpose we isolated platelets from young and old donors selected by lack of systemic and haematological diseases. We studied the accumulation of a particular deletion (4977-bp deletion) that usually accumulates in an age-related manner in different post-mitotic tissues, such as brain, heart and skeletal muscle, and in some non-post-mitotic tissues (skin, liver). Using different primers, we failed to detect this particular species of deletion in platelets both from young and old individuals. However, we cannot exclude the presence of other species of deletions or point mutations affecting the mitochondrial DNA in platelets during the aging process.
The International Journal of Biochemistry & Cell Biology | 2013
Alessandra Baracca; Gianluca Sgarbi; Anna Padula; Giancarlo Solaini
Hypoxia induces severe changes in cell biology, particularly affecting energy production pathways. Although the theme has been widely investigated, particularly in transformed cells, studies of the mitochondrial bioenergetics of normal cells exposed to both prolonged hypoxic periods and low or null glucose concentration have been scarcely addressed. To evaluate the mitochondrial changes of cells exposed to the latter conditions, we set experiments in which the contribution of the mitochondrial energy production was maximized at the expenses of low glycolysis. Human fibroblasts were exposed to 1% oxygen tension, a hypoxic condition experimentally established for these cells, and grown in glucose deficient media. At variance with fibroblasts grown in 5-25 mM glucose, fibroblasts grown in glucose deficiency adapted to hypoxia by reducing only slightly the mitochondrial mass and preserving a well structured network as it occurs in normoxia. Moreover, the oxidative phosphorylation (OXPHOS) rate of the mitochondria was enhanced, due to increased OXPHOS complexes level. The master transcriptional modulator induced by hypoxia HIF-1α and BNIP3, a factor activating mitochondrial autophagy, were expressed both in the presence and in the absence of glucose, but to a lower level in the latter condition. Similarly, the microtubule-associated protein light chain 3 active fragment (LC3-II), a typical marker of autophagy, was found less expressed in glucose-free medium than in the presence of glucose. Therefore, our data show for the first time that glucose availability significantly affects the hypoxia-induced HIF-1/BNIP3 response, and in particular glucose absence results in enhancing the OXPHOS rate.
Biochimica et Biophysica Acta | 2008
Giancarlo Solaini; David A. Harris; Giorgio Lenaz; Gianluca Sgarbi; Alessandra Baracca
Mitochondrial F(1)F(0)-ATPase was studied in lymphocytes from patients with neuropathy, ataxia, and retinitis pigmentosa (NARP), caused by a mutation at leu-156 in the ATPase 6 subunit. The mutation giving the milder phenotype (Leu156Pro) suffered a 30% reduction in proton flux, and a similar loss in ATP synthetic activity. The more severe mutation (Leu156Arg) also suffered a 30% reduction in proton flux, but ATP synthesis was virtually abolished. Oligomycin sensitivity of the proton translocation through F(0) was enhanced by both mutations. We conclude that in the Leu156Pro mutation, rotation of the c-ring is slowed but coupling of ATP synthesis to proton flux is maintained, whereas in the Leu156Arg mutation, proton flux appears to be uncoupled. Modelling indicated that, in the Leu156Arg mutation, transmembrane helix III of ATPase 6 is unable to span the membrane, terminating in an intramembrane helix II-helix III loop. We propose that the integrity of transmembrane helix III is essential for the mechanical function of ATPase 6 as a stator element in the ATP synthase, but that it is not relevant for oligomycin inhibition.