Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluigi Cardinali is active.

Publication


Featured researches published by Gianluigi Cardinali.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1993

Electrophoretic karyotyping as a taxonomic tool in the genus Saccharomyces

Ann Vaughan-Martini; Alessandro Martini; Gianluigi Cardinali

SummaryThe electrophoretic karyotypes of strains of the ten species of the yeast genusSaccharomyces (sensu Vaughan-Martini & Martini 1992) were determined by the CHEF (contour-clamped homogeneous electric field) system of pulsed field gel electrophoresis. The number of bands was found to vary from 6 to 17 and the calculated molecular weights of haploid genomes ranged from 7.9 to 14.6 Mbp. The type strains ofS. exiguus and the four species of theSaccharomyces sensu stricto complex (S. bayanus, S. cerevisiae, S. paradoxus andS. pastorianus) have genomes comprised of chromosomes of all three size classes: light (< 500 kb), medium (500–1000 kb) and heavy (> 1,000 kb).Saccharomyces kluyveri DNA has only heavy bands, while the remaining species exhibit medium and heavy chromosomes. When more than one strain of each species was examined, it was seen that while the speciesS. bayanus, S. castellii, S. cerevisiae, S. kluyveri, S. paradoxus andS. pastorianus showed uniform karyotypes,S. dairensis, S. exiguus, S. servazzii andS. unisporus comprise heterogeneous taxa.


Persoonia | 2015

One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes

J. B. Stielow; C.A. Lévesque; Keith A. Seifert; Wieland Meyer; Laszlo Irinyi; D. Smits; R. Renfurm; G.J.M. Verkley; Marizeth Groenewald; D. Chaduli; A. Lomascolo; S. Welti; L. Lesage-Meessen; A. Favel; Abdullah M. S. Al-Hatmi; Ulrike Damm; N. Yilmaz; Jos Houbraken; Lorenzo Lombard; W. Quaedvlieg; M. Binder; L.A.I. Vaas; D. Vu; Andrey Yurkov; Dominik Begerow; O. Roehl; Marco A. Guerreiro; Álvaro Fonseca; K. Samerpitak; A.D. van Diepeningen

The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1–D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial β -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5–6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.


Applied and Environmental Microbiology | 2011

Antifungal Activity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread

Rossana Coda; Angela Cassone; Carlo Giuseppe Rizzello; Luana Nionelli; Gianluigi Cardinali; Marco Gobbetti

ABSTRACT This study aimed at investigating the antifungal activity of Wickerhamomyces anomalus and sourdough lactic acid bacteria to extend the shelf life of wheat flour bread. The antifungal activity was assayed by agar diffusion, growth rate inhibition, and conidial germination assays, using Penicillium roqueforti DPPMAF1 as the indicator fungus. Sourdough fermented by Lactobacillus plantarum 1A7 (S1A7) and dough fermented by W. anomalus LCF1695 (D1695) were selected and characterized. The water/salt-soluble extract of S1A7 was partially purified, and several novel antifungal peptides, encrypted into sequences of Oryza sativa proteins, were identified. The water/salt-soluble extract of D1695 contained ethanol and, especially, ethyl acetate as inhibitory compounds. As shown by growth inhibition assays, both water/salt-soluble extracts had a large inhibitory spectrum, with some differences, toward the most common fungi isolated from bakeries. Bread making at a pilot plant was carried out with S1A7, D1695, or a sourdough started with a combination of both strains (S1A7-1695). Slices of the bread manufactured with S1A7-1695 did not show contamination by fungi until 28 days of storage in polyethylene bags at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate. The effect of sourdough fermentation with W. anomalus LCF1695 was also assessed based on rheology and sensory properties.


Applied and Environmental Microbiology | 2012

Lactic Acid Bacterium and Yeast Microbiotas of 19 Sourdoughs Used for Traditional/Typical Italian Breads: Interactions between Ingredients and Microbial Species Diversity

Fabio Minervini; Raffaella Di Cagno; Anna Lattanzi; Maria De Angelis; Livio Antonielli; Gianluigi Cardinali; Stefan Cappelle; Marco Gobbetti

ABSTRACT The study of the microbiotas of 19 Italian sourdoughs used for the manufacture of traditional/typical breads allowed the identification, through a culture-dependent approach, of 20 and 4 species of lactic acid bacteria (LAB) and yeasts, respectively. Numerically, the most frequent LAB isolates were Lactobacillus sanfranciscensis (ca. 28% of the total LAB isolates), Lactobacillus plantarum (ca. 16%), and Lactobacillus paralimentarius (ca. 14%). Saccharomyces cerevisiae was identified in 16 sourdoughs. Candida humilis, Kazachstania barnettii, and Kazachstania exigua were also identified. As shown by principal component analysis (PCA), a correlation was found between the ingredients, especially the type of flour, the microbial community, and the biochemical features of sourdoughs. Triticum durum flours were characterized by the high level of maltose, glucose, fructose, and free amino acids (FAA) correlated with the sole or main presence of obligately heterofermentative LAB, the lowest number of facultatively heterofermentative strains, and the low cell density of yeasts in the mature sourdoughs. This study highlighted, through a comprehensive and comparative approach, the dominant microbiotas of 19 Italian sourdoughs, which determined some of the peculiarities of the resulting traditional/typical Italian breads.


International Journal of Systematic and Evolutionary Microbiology | 1994

Electrophoretic Karyotypes of Authentic Strains of the Sensu Stricto Group of the Genus Saccharomyces

Gianluigi Cardinali; Alessandro Martini

A comparative electrophoretic karyotyping study was performed with several certified authentic strains of the four species that could be distinguished by nuclear DNA (nDNA)-nDNA reassociation data within the sensu stricto group of the genus Saccharomyces. A multivariate analysis of the polymorphisms observed in pulsed-field gel electrophoretic profiles (numbers and molecular weights of separated units) revealed that the strains could be separated into four clusters that corresponded to the taxa that were distinguished on the basis of nDNA comparisons. Discrepancies between nDNA reassociation data and membership in the corresponding clusters were observed only with two strains of Saccharomyces paradoxus. Blind tests carried out with additional industrial strains confirmed the general validity of the statistical model created for comparison of karyotypes within the species included in Saccharomyces sensu stricto.


IMA Fungus | 2013

MycoBank gearing up for new horizons.

V. Robert; D. Vu; Ammar Ben Hadj Amor; Nathalie van de Wiele; Carlo P.J.M. Brouwer; B. Jabas; Szaniszlo Szoke; Ahmed Dridi; Maher Triki; Samy ben Daoud; Oussema Chouchen; Lea Vaas; Arthur de Cock; Joost A. Stalpers; Dora Stalpers; G.J.M. Verkley; Marizeth Groenewald; Felipe Borges dos Santos; Gerrit Stegehuis; Wei Li; Linhuan Wu; Run Zhang; Juncai Ma; Miaomiao Zhou; Sergio Pérez Gorjón; Lily Eurwilaichitr; Supawadee Ingsriswang; Karen Hansen; Conrad L. Schoch; Barbara Robbertse

MycoBank, a registration system for fungi established in 2004 to capture all taxonomic novelties, acts as a coordination hub between repositories such as Index Fungorum and Fungal Names. Since January 2013, registration of fungal names is a mandatory requirement for valid publication under the International Code of Nomenclature for algae, fungi and plants (ICN). This review explains the database innovations that have been implemented over the past few years, and discusses new features such as advanced queries, registration of typification events (MBT numbers for lecto, epi- and neotypes), the multi-lingual database interface, the nomenclature discussion forum, annotation system, and web services with links to third parties. MycoBank has also introduced novel identification services, linking DNA sequence data to numerous related databases to enable intelligent search queries. Although MycoBank fills an important void for taxon registration, challenges for the future remain to improve links between taxonomic names and DNA data, and to also introduce a formal system for naming fungi known from DNA sequence data only. To further improve the quality of MycoBank data, remote access will now allow registered mycologists to act as MycoBank curators, using Citrix software.


Applied and Environmental Microbiology | 2014

Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices.

Pasquale Filannino; Gianluigi Cardinali; Carlo Giuseppe Rizzello; Solange Buchin; M. De Angelis; Marco Gobbetti; R. Di Cagno

ABSTRACT Strains of Lactobacillus plantarum were grown and stored in cherry (ChJ), pineapple (PJ), carrot (CJ), and tomato (TJ) juices to mimic the chemical composition of the respective matrices. Wheat flour hydrolysate (WFH), whey milk (W), and MRS broth were also used as representatives of other ecosystems. The growth rates and cell densities of L. plantarum strains during fermentation (24 h at 30°C) and storage (21 days at 4°C) differed only in part, being mainly influenced by the matrix. ChJ and PJ were the most stressful juices for growth and survival. Overall, the growth in juices was negatively correlated with the initial concentration of malic acid and carbohydrates. The consumption of malic acid was noticeable for all juices, but mainly during fermentation and storage of ChJ. Decreases of branched-chain amino acids (BCAA)—with the concomitant increase of their respective branched alcohols—and His and increases of Glu and gamma-aminobutyric acid (GABA) were the main traits of the catabolism of free amino acids (FAA), which were mainly evident under less acidic conditions (CJ and TJ). The increase of Tyr was found only during storage of ChJ. Some aldehydes (e.g., 3-methyl-butanal) were reduced to the corresponding alcohols (e.g., 3-methyl-1-butanol). After both fermentation and storage, acetic acid increased in all fermented juices, which implied the activation of the acetate kinase route. Diacetyl was the ketone found at the highest level, and butyric acid increased in almost all fermented juices. Data were processed through multidimensional statistical analyses. Except for CJ, the juices (mainly ChJ) seemed to induce specific metabolic traits, which differed in part among the strains. This study provided more in-depth knowledge on the metabolic mechanisms of growth and maintenance of L. plantarum in vegetable and fruit habitats, which also provided helpful information to select the most suitable starters for fermentation of targeted matrices.


Molecular Genetics and Genomics | 1999

Galactose induction in yeast involves association of Gal80p with Gal1p or Gal3p.

V. Vollenbroich; J. Meyer; R. Engels; Gianluigi Cardinali; R. A. Menezes; Cornelis P. Hollenberg

Abstract Gal1p carries out two functions in the galactose pathway of yeast. It activates Gal4p by interacting with Gal80p – a function that can also served by Gal3p – and it catalyzes the formation of galactose-1-phosphate. Recently, we and others have presented biochemical evidence for complex formation between Gal1p and Gal80p. Here, we extend these data and present genetic evidence for an interaction between Gal1p and Gal80p in vivo, using a two-hybrid assay. Interaction between Gal1p and Gal80p depends on the presence of galactose, but not on the catalytic activity of Gal1p. A new class of Kluyveromyces lactis mutants was isolated, designated Klgal1-m, which have lost the derepressing activity but retain galactokinase activity, indicating that the two Gal1p activities are functionally independent. The KlGal1-m proteins are defective in their ability to interact with Gal80p in a two-hybrid assay. The locations of gal1-m mutations identify putative interaction sites in Gal1p and Gal80p. A dominant mutation, KlGAL1-d, leads to a high level of constitutive expression of genes of the galactose pathway. The behavior of chimeric proteins consisting of Gal3p and KlGal1p sequences indicates that both the N-terminal and C-terminal halves of KlGal1p are involved in specific interaction with KlGal80p.


PLOS ONE | 2015

Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling

Ilario Ferrocino; Raffaella Di Cagno; Maria De Angelis; Silvia Turroni; Elena Bancalari; Kalliopi Rantsiou; Gianluigi Cardinali; Erasmo Neviani; Luca Cocolin

In this study, the fecal microbiota of 153 healthy volunteers, recruited from four different locations in Italy, has been studied by coupling viable counts, on different microbiological media, with ribosomal RNA Denaturing Gradient Gel Electrophoresis (rRNA-DGGE). The volunteers followed three different diets, namely omnivore, ovo-lacto-vegetarian and vegan. The results obtained from culture-dependent and -independent methods have underlined a high level of similarity of the viable fecal microbiota for the three investigated diets. The rRNA DGGE profiles were very complex and comprised a total number of bands that varied from 67 to 64 for the V3 and V9 regions of the 16S rRNA gene, respectively. Only a few bands were specific in/of all three diets, and the presence of common taxa associated with the dietary habits was found. As far as the viable counts are concerned, the high similarity of the fecal microbiota was once again confirmed, with only a few of the investigated groups showing significant differences. Interestingly, the samples grouped differently, according to the recruitment site, thus highlighting a higher impact of the food consumed by the volunteers in the specific geographical locations than that of the type of diet. Lastly, it should be mentioned that the fecal microbiota DGGE profiles obtained from the DNA were clearly separated from those produced using RNA, thus underlining a difference between the total and viable populations in the fecal samples.


Journal of Industrial Microbiology & Biotechnology | 1996

Differential killer sensitivity as a tool for fingerprinting wine-yeast strains of Saccharomyces cerevisiae

Ann Vaughan-Martini; Gianluigi Cardinali; Alessandro Martini

The extreme variability of the killer phenomenon in nature, expressed differently in different strains of the same yeast species, embodies an exceptional potential for the discrimination of yeasts at the strain level. Killer-sensitive relationships between a killer reference panel of 24 yeasts belonging to 13 species of six genera, and different industrial wine-starters ofSaccharomyces cerevisiae can be used profitably for a rapid and simple fingerprinting procedure.

Collaboration


Dive into the Gianluigi Cardinali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Livio Antonielli

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincent Robert

Centraalbureau voor Schimmelcultures

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge