Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianluigi Mazzoccoli is active.

Publication


Featured researches published by Gianluigi Mazzoccoli.


Chronobiology International | 2013

Crosstalk between the circadian clock circuitry and the immune system

Nicolas Cermakian; Tanja Lange; Diego A. Golombek; Dipak K. Sarkar; Atsuhito Nakao; Shigenobu Shibata; Gianluigi Mazzoccoli

Various features, components, and functions of the immune system present daily variations. Immunocompetent cell counts and cytokine levels present variations according to the time of day and the sleep-wake cycle. Moreover, different immune cell types, such as macrophages, natural killer cells, and lymphocytes, contain a circadian molecular clockwork. The biological clocks intrinsic to immune cells and lymphoid organs, together with inputs from the central pacemaker of the suprachiasmatic nuclei via humoral and neural pathways, regulate the function of cells of the immune system, including their response to signals and their effector functions. Consequences of this include, for example, the daily variation in the response to an immune challenge (e.g., bacterial endotoxin injection) and the circadian control of allergic reactions. The circadian-immune connection is bidirectional, because in addition to this circadian control of immune functions, immune challenges and immune mediators (e.g., cytokines) were shown to have strong effects on circadian rhythms at the molecular, cellular, and behavioral levels. This tight crosstalk between the circadian and immune systems has wide-ranging implications for disease, as shown by the higher incidence of cancer and the exacerbation of autoimmune symptoms upon circadian disruption. (Author correspondence: [email protected])


PLOS ONE | 2012

Mirna Expression Profiles Identify Drivers in Colorectal and Pancreatic Cancers

Ada Piepoli; Francesca Tavano; Massimiliano Copetti; Tommaso Mazza; Orazio Palumbo; Anna Panza; Francesco Fabio di Mola; Valerio Pazienza; Gianluigi Mazzoccoli; Giuseppe Biscaglia; Annamaria Gentile; Nicola Mastrodonato; Massimo Carella; Fabio Pellegrini; Pierluigi Di Sebastiano; Angelo Andriulli

Background and Aim Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways. Methods Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed. Results The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers. Conclusion MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.


Chronobiology International | 2012

Clock Genes and Clock-Controlled Genes in the Regulation of Metabolic Rhythms

Gianluigi Mazzoccoli; Pazienza; Manlio Vinciguerra

Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology. (Author correspondence: [email protected])


Chronobiology International | 2011

Clock Gene Expression Levels and Relationship With Clinical and Pathological Features in Colorectal Cancer Patients

Gianluigi Mazzoccoli; Anna Panza; Maria Rosaria Valvano; Orazio Palumbo; Massimo Carella; Valerio Pazienza; Giuseppe Biscaglia; Francesca Tavano; P. Di Sebastiano; Angelo Andriulli; Ada Piepoli

The clock gene machinery controls cellular metabolism, proliferation, and key functions, such as DNA damage recognition and repair. Dysfunction of the circadian clock is involved in tumorigenesis, and altered expression of some clock genes has been found in cancer patients. The aim of this study was to evaluate the expression levels of core clock genes in colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (qPCR) was used to examine ARNTL1, CLOCK, PER1, PER2, PER3, CRY1, CRY2, Timeless (TIM), TIPIN, and CSNK1Ε expression levels in the tumor tissue and matched apparently healthy mucosa of CRC patients. In the tumor tissue of CRC patients, compared to their matched healthy mucosa, expression levels of ARNTL1 (p = .002), PER1 (p = .002), PER2 (p = .011), PER3 (p = .003), and CRY2 (p = .012) were lower, whereas the expression level of TIM (p = .044) was higher. No significant difference was observed in the expression levels of CLOCK (p = .778), CRY1 (p = .600), CSNK1Ε (p = .903), and TIPIN (p = .136). As to the clinical and pathological features, a significant association was found between low CRY1 expression levels in tumor mucosa and age (p = .026), and female sex (p = .005), whereas high CRY1 expression levels in tumor mucosa were associated with cancer location in the distal colon (p = .015). Moreover, high TIM mRNA levels in the tumor mucosa were prevalent whenever proximal lymph nodes were involved (p = .013) and associated with TNM stages III–IV (p = .005) and microsatellite instability (p = .015). Significantly poorer survival rates were evidenced for CRC patients with lower expression in the tumor tissue of PER1 (p = .010), PER3 (p = .010), and CSNKIE (p = .024). In conclusion, abnormal expression levels of core clock genes in CRC tissue may be related to the process of tumorigenesis and exert an influence on host/tumor interactions. (Author correspondence: [email protected])


Current Pharmaceutical Design | 2013

Redox homeostasis and epigenetics in non-alcoholic fatty liver disease (NAFLD)

Christine Podrini; Michela Borghesan; Azzura Greco; Valerio Pazienza; Gianluigi Mazzoccoli; Manlio Vinciguerra

Non-alcoholic fatty liver disease (NAFLD), an accumulation of intra-hepatic triglycerides that is often considered the hepatic manifestation of insulin resistance, is the most common cause of chronic liver disease in the Western countries with up to one third of the population affected. NAFLD is a spectrum of disturbances that encompasses various degrees of liver damage ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). NASH is characterized by hepatocellular injury/inflammation with or without fibrosis. The individuals with NAFLD develop NASH in 10% of the cases, and are also at risk of developing hepatocellular carcinoma (HCC). Epigenetic mechanisms of nuclear chromatin remodeling, such as DNA methylation, post-translational modifications of histones, and incorporation of histone variants into the chromatin are increasingly recognized as crucial factors in the pathophysiology of NAFLD. NAFLD is often accompanied by oxidative stress: reactive oxygen species (ROS) are implicated in altered reduction/oxidation (redox) reactions that attack cellular macromolecules and are detected in the liver of patients and animal models of NAFLD. In this review, we summarize recent knowledge advancements in the hepatic epigenetic and redox mechanisms, and their possible links, involved in the pathogenesis and treatment of NAFLD.


Biochemical Pharmacology | 2013

The circadian clock circuitry and the AHR signaling pathway in physiology and pathology.

George Anderson; Timothy V. Beischlag; Manlio Vinciguerra; Gianluigi Mazzoccoli

Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the bodys adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the bodys internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.


PLOS ONE | 2013

Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma.

Francesca Rappa; Azzura Greco; Christine Podrini; Francesco Cappello; Michelangelo Foti; Lucie Bourgoin; Marion Peyrou; Arianna Marino; Nunzia Scibetta; Roger Williams; Gianluigi Mazzoccoli; Massimo Federici; Valerio Pazienza; Manlio Vinciguerra

Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously. Methods We examined macroH2A1.1 and macroH2A1.2 protein expression levels in the liver of two murine models of fat-associated HCC, the high fat diet/diethylnistrosamine (DEN) and the phosphatase and tensin homolog (PTEN) liver specific knock-out (KO) mouse, and in human liver samples of subjects with steatosis or HCC, using immunoblotting and immunohistochemistry. Results Protein levels for both macroH2A1 isoforms were massively upregulated in HCC, whereas macroH2A1.2 was specifically upregulated in steatosis. In addition, examination of human liver samples showed a significant difference (p<0.01) in number of positive nuclei in HCC (100% of tumor cells positive for either macroH2A1.1 or macroH2A1.2), when compared to steatosis (<2% of hepatocytes positive for either isoform). The steatotic areas flanking the tumors were highly immunopositive for macroH2A1.1 and macroH2A1.2. Conclusions These data obtained in mice and humans suggest that both macroH2A1 isoforms may play a role in HCC pathogenesis and moreover may be considered as novel diagnostic markers for human HCC.


Virus Research | 2011

Hypermethylated levels of E-cadherin promoter in Huh-7 cells expressing the HCV core protein

Maria Ripoli; Raffaela Barbano; Teresa Balsamo; Claudia Piccoli; Virgilio Brunetti; Michelina Coco; Gianluigi Mazzoccoli; Manlio Vinciguerra; Valerio Pazienza

BACKGROUND AND AIM The mechanisms of hepatocarcinogenesis induced by hepatitis C virus remain unclear. Our aim was to investigate the effect of the HCV core protein on the promoter methylation status of selected genes potentially involved in the hepatocellular carcinoma (HCC). MATERIALS AND METHODS We evaluated the promoter methylation levels of the E-cadherin (CDH1), the glutathione S-transferase p1 (GSTP1), adenomatosis polyposis coli (APC), tissue inhibitor of metalloproteinase 3 (TIMP3), catenin (cadherin-associated protein) beta 1 (CNNTB1) genes by a quantitative methylation-specific polymerase chain reaction (QMSP) in the in vitro model of Huh-7 cells expressing the HCV core protein of genotype 1b. RESULTS We found that CDH1 promoter was hypermethylated in genotype 1b HCV core protein-positive cells as compared to control cells expressing the GFP protein alone (HCV core 1b vs GFP p=0.00; HCV core 1b vs Huh-7 p=0.03). This resulted in reduced levels of CDH1 protein as evaluated by immunoblot and by immunofluorescence. On the other hand no significant changes were observed for the other genes investigated. Furthermore, we present evidence that genotype 1b HCV core protein expression induces SIRT1 upregulation and that treatment with SIRT1 inhibitor sirtinol decreases the methylation levels of CDH1 promoter (1b+sirtinol vs 1b p=0.05; 1b+sirtinol vs GFP+sirtinol p=NS) resulting in 1.7-fold increased CDH1 mRNA expression (1b+sirtinol vs 1b p=0.05). CONCLUSIONS Our findings suggest that HCV core protein could play a role in HCC at least in part by altering the methylation status of CDH1 promoter. These findings could also suggest a novel therapeutic approach for HCC.


Trends in Endocrinology and Metabolism | 2013

Aging signaling pathways and circadian clock-dependent metabolic derangements.

Maria Florencia Tevy; Jadwiga M. Giebultowicz; Zachary Pincus; Gianluigi Mazzoccoli; Manlio Vinciguerra

The circadian clock machinery orchestrates organism metabolism to ensure that development, survival, and reproduction are attuned to diurnal environmental variations. For unknown reasons, there is a decline in circadian rhythms with age, concomitant with declines in the overall metabolic tissue homeostasis and changes in the feeding behavior of aged organisms. This disruption of the relationship between the clock and the nutrient-sensing networks might underlie age-related diseases; overall, greater knowledge of the molecular mediators of and variations in clock networks during lifespan may shed light on the aging process and how it may be delayed. In this review we address the complex links between the circadian clock, metabolic (dys)functions, and aging in different model organisms.


Biomedicine & Pharmacotherapy | 2012

Altered expression of the clock gene machinery in kidney cancer patients.

Gianluigi Mazzoccoli; Ada Piepoli; Massimo Carella; Anna Panza; Valerio Pazienza; Giorgia Benegiamo; Orazio Palumbo; Elena Ranieri

BACKGROUND AND AIM Kidney cancer is associated with alteration in the pathways regulated by von Hippel-Lindau protein and hypoxia inducible factor α. Tight interrelationships have been evidenced between hypoxia response pathways and circadian pathways. The dysregulation of the circadian clock circuitry is involved in carcinogenesis. The aim of our study was to evaluate the clock gene machinery in kidney cancer. METHODS mRNA expression levels of the clock genes ARNTL1, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1, CRY2, TIMELESS, TIPIN and CSNK1E and of the clock controlled gene SERPINE1 were evaluated by DNA microarray assays and by qRT-PCR in primary tumor and matched nontumorous tissue collected from a cohort of 11 consecutive kidney cancer patients. RESULTS In kidney tumor tissue, we found down-regulation of PER2 (median=0.658, Q1-Q3=0.562-0.744, P<0.01), TIMELESS (median=0.705, Q1-Q3=0.299-1.330, P=0.04) and TIPIN (median=0.556, Q1-Q3=0.385-1.945, P=0.01), up-regulation of SERPINE1 (median=1.628, Q1-Q3=0.339-4.071, P=0.04), whereas the expression of ARNTL2 (median=0.605, Q1-Q3=0.318-1.738, P=0.74) and CSNK1E (median=0.927, Q1-Q3=0.612-2.321, P=0.33) did not differ. A statistically significant correlation was evidenced between mRNA levels of PER2 and CSNKIE (r=0.791, P<0.01), PER2 and TIPIN (r=0.729, P=0.01), PER2 and SERPINE1 (r=0.704, P=0.01), TIMELESS and TIPIN (r=0.605, P=0.04), TIMELESS and CSNKIE (r=0.637, P=0.03), TIPIN and CSNKIE (r=0.940, P<0.01). CONCLUSION In kidney cancer, the circadian clock circuitry is deregulated and the altered expression of the clock genes might be involved in disease onset and progression.

Collaboration


Dive into the Gianluigi Mazzoccoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerio Pazienza

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Ada Piepoli

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Francesco Giuliani

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Antonio Greco

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Angelo De Cata

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelo Andriulli

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar

Stefano Carughi

Casa Sollievo della Sofferenza

View shared research outputs
Researchain Logo
Decentralizing Knowledge