Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianni Barcaccia is active.

Publication


Featured researches published by Gianni Barcaccia.


Plant Physiology | 2005

SERK and APOSTART. Candidate genes for apomixis in Poa pratensis

Emidio Albertini; Gianpiero Marconi; Lara Reale; Gianni Barcaccia; Andrea Porceddu; Francesco Ferranti; Mario Falcinelli

Seed production generally requires the mating of opposite sex gametes. Apomixis, an asexual mode of reproduction, avoids both meiotic reduction and egg fertilization. The essential feature of apomixis is that an embryo is formed autonomously by parthenogenesis from an unreduced egg of an embryo sac generated through apomeiosis. If apomixis were well understood and harnessed, it could be exploited to indefinitely propagate superior hybrids or specific genotypes bearing complex gene sets. A more profound knowledge of the mechanisms that regulate reproductive events would contribute fundamentally to understanding the genetic control of the apomictic pathway. In Poa pratensis, we isolated and characterized two genes, PpSERK (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE) and APOSTART. These full-length genes were recovered by rapid amplification of cDNA ends and their temporal and spatial expression patterns were assessed by reverse transcription-polymerase chain reaction and in situ hybridization, respectively. The expression of PpSERK and APOSTART differed in apomictic and sexual genotypes. Their putative role in cell-signaling transduction cascades and trafficking events required during sporogenesis, gametogenesis, and embryogenesis in plants is reported and discussed. We propose that, in nucellar cells of apomictic genotypes, PpSERK is the switch that channels embryo sac development and that it may also redirect signaling gene products to compartments other than their typical ones. The involvement of APOSTART in meiosis and programmed cell death is also discussed.


Molecular Genetics and Genomics | 2002

Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L.

A. Porceddu; Emidio Albertini; Gianni Barcaccia; Gianpiero Marconi; F. B. Bertoli; Fabio Veronesi

Abstract. The Sequence-Specific Amplification Polymorphism (S-SAP) method, recently derived from the Amplified Fragment Length Polymorphism (AFLP) technique, produces amplified fragments containing a retrotransposon LTR sequence at one end and a host restriction site at the other. We report the application of this procedure to the LTR of the Tms1 element from Medicago sativa L. Genomic dot-blot analysis indicated that Tms1 LTRs represent about 0.056% of the M. sativa genome, corresponding to 16×103 copies per haploid genome. An average of 66 markers were amplified for each primer combination. Overall 49 polymorphic fragments were reliably scored and mapped in a F1 population obtained by crossing diploid M. falcata with M. coerulea. The utility of the LTR S-SAP markers was higher than that of AFLP or SAMPL (Selective Amplification of Microsatellite Polymorphic Loci) markers. The efficiency index of the LTR S-SAP assay was 28.3, whereas the corresponding values for AFLP and SAMPL markers were 21.1 and 16.7, respectively. The marker index for S-SAP was 13.1, compared to 8.8 for AFLP and 9.5 for SAMPL. Application of the Tms1 LTR-based S-SAP to double-stranded cDNA resulted in a complex banding pattern, demonstrating the presence of Tms1 LTRs within exons. As the technique was successfully applied to other species of the genus Medicago, it should prove suitable for studying genetic diversity within, and relatedness between, alfalfa species.


Plant Molecular Biology | 2004

Isolation of candidate genes for apomixis in Poa pratensis L.

Emidio Albertini; Gianpiero Marconi; Gianni Barcaccia; Lorenzo Raggi; Mario Falcinelli

The essential feature of apomixis is that an embryo is formed autonomously by parthenogenesis from an unreduced egg of an embryo sac generated through apomeiosis. The genetic constitution of the offspring is, therefore, usually identical to the maternal parent, a trait of great interest to plant breeders. If apomixis were well understood and harnessed, it could be exploited to indefinitely propagate superior hybrids or specific genotypes bearing complex gene sets. A fundamental contribution to the understanding of the genetic control of the apomictic pathway could be provided by a deep knowledge of molecular mechanisms that regulate the reproductive events. In Poa pratensis the cDNA-AFLP method of mRNA profiling allowed us to visualize a total of 2248 transcript-derived fragments and to isolate 179 sequences that differed qualitatively or quantitatively between apomictic and sexual genotypes at the time of flowering when the primary stages of apomixis occur. Three ESTs were chosen for further molecular characterization because of their cDNA-AFLP expression pattern and BLAST information retrieval. The full-lengths of the newly isolated genes were recovered by RACE and their temporal expression patterns were assessed by RT-PCR. Their putative role in cell signaling transduction cascades and trafficking events required during sporogenesis, gametogenesis and embryogenesis in plants is reported and discussed.


BMC Plant Biology | 2009

Computational annotation of genes differentially expressed along olive fruit development

Giulio Galla; Gianni Barcaccia; Angelo Ramina; S. Collani; Fiammetta Alagna; Luciana Baldoni; Nicolò G. M. Cultrera; Federico Martinelli; L. Sebastiani; P. Tonutti

BackgroundOlea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software.ResultsmRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all known KEGG (Kyoto Encyclopaedia of Genes and Genomes) metabolic pathways for characterizing and positioning retrieved EST records. The integration of the olive sequence datasets within the MapMan platform for microarray analysis allowed the identification of specific biosynthetic pathways useful for the definition of key functional categories in time course analyses for gene groups.ConclusionThe bioinformatic annotation of all gene sequences was useful to shed light on metabolic pathways and transcriptional aspects related to carbohydrates, fatty acids, secondary metabolites, transcription factors and hormones as well as response to biotic and abiotic stresses throughout olive drupe development. These results represent a first step toward both functional genomics and systems biology research for understanding the gene functions and regulatory networks in olive fruit growth and ripening.


Theoretical and Applied Genetics | 2002

Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers

Andrea Porceddu; Emidio Albertini; Gianni Barcaccia; Egizia Falistocco; Mario Falcinelli

Abstract The high versatility of the mode of reproduction and the retention of a pollen recognition system are the factors responsible for the extreme complexity of the genome in Poa pratensis L. Two genetic maps, one of an apomictic and one of a sexual genotype, were constructed using a two-way pseudo-testcross strategy and multiplex PCR-based molecular markers (AFLP and SAMPL). Due to the high ploidy level and the uncertainty of chromosome pairing-behavior at meiosis, only parent-specific single-dose markers (SDMs) that segregated 1:1 in an F1 mapping population (161 out of 299 SAMPLs, and 70 out of 275 AFLPs) were used for linkage analysis. A total of 41 paternal (33 SAMPLs and 8 AFLPs) and 47 maternal (33 SAMPLs and 14 AFLPs) SDMs, tested to be linked in coupling phase, were mapped to 7+7 linkage groups covering 367 and 338.4 cM, respectively. The comparison between the two marker systems revealed that SAMPL markers were statistically more efficient than AFLP ones in detecting parent-specific SDMs (75% vs 32.4%). There were no significant differences in the percentages of distorted marker alleles detected by the two marker systems (27.8% of SAMPLs vs 21.3% of AFLPs). The pairwise comparison of co-segregational groups for linkage detection between marker loci suggested that at least some of the P. pratensis chromosomes pair preferentially at meiosis-I.


Journal of Agricultural and Food Chemistry | 2008

Genetic and environmental factors affecting allergen-related gene expression in apple fruit (Malus domestica L. Borkh)

Alessandro Botton; Paolo Lezzer; Alberto Dorigoni; Gianni Barcaccia; Benedetto Ruperti; Angelo Ramina

Freshly consumed apples can cause allergic reactions because of the presence of four classes of allergens, namely, Mal d 1, Mal d 2, Mal d 3, and Mal d 4, and their cross-reactivity with sensitizing allergens of other species. Knowledge of environmental and endogenous factors affecting the allergenic potential of apples would provide important information to apple breeders, growers, and consumers for the selection of hypoallergenic genotypes, the adoption of agronomical practices decreasing the allergenic potential, and the consumption of fruits with reduced amount of allergens. In the present research, expression studies were performed by means of real-time PCR for all the known allergen-encoding genes in apple. Fruit samples were collected from 15 apple varieties and from fruits of three different trials, set up to assess the effect of shadowing, elevation, storage, and water stress on the expression of allergen genes. Principal components analysis (PCA) was performed for the classification of varieties according to gene expression values, pointing out that the cultivars Fuji and Brina were two good hypoallergenic candidates. Shadowing, elevation, and storage significantly affected the transcription of the allergen-encoding genes, whereas water stress slightly influenced the expression of only two genes, in spite of the dramatic effect on both fruit size and vegetative growth of the trees. In particular, shadowing may represent an important cultural practice aimed at reducing apple cortex allergenicity. Moreover, elevation and storage may be combined to reduce the allergenic potential of apple fruits. The possible implications of the results for breeders, growers, and consumers are discussed critically.


Sexual Plant Reproduction | 2013

Apomixis in plant reproduction: a novel perspective on an old dilemma

Gianni Barcaccia; Emidio Albertini

Seed is one of the key factors of crop productivity. Therefore, a comprehension of the mechanisms underlying seed formation in cultivated plants is crucial for the quantitative and qualitative progress of agricultural production. In angiosperms, two pathways of reproduction through seed exist: sexual or amphimictic, and asexual or apomictic; the former is largely exploited by seed companies for breeding new varieties, whereas the latter is receiving continuously increasing attention from both scientific and industrial sectors in basic research projects. If apomixis is engineered into sexual crops in a controlled manner, its impact on agriculture will be broad and profound. In fact, apomixis will allow clonal seed production and thus enable efficient and consistent yields of high-quality seeds, fruits, and vegetables at lower costs. The development of apomixis technology is expected to have a revolutionary impact on agricultural and food production by reducing cost and breeding time, and avoiding the complications that are typical of sexual reproduction (e.g., incompatibility barriers) and vegetative propagation (e.g., viral transfer). However, the development of apomixis technology in agriculture requires a deeper knowledge of the mechanisms that regulate reproductive development in plants. This knowledge is a necessary prerequisite to understanding the genetic control of the apomictic process and its deviations from the sexual process. Our molecular understanding of apomixis will be greatly advanced when genes that are specifically or differentially expressed during embryo and embryo sac formation are discovered. In our review, we report the main findings on this subject by examining two approaches: i) analysis of the apomictic process in natural apomictic species to search for genes controlling apomixis and ii) analysis of gene mutations resembling apomixis or its components in species that normally reproduce sexually. In fact, our opinion is that a novel perspective on this old dilemma pertaining to the molecular control of apomixis can emerge from a cross-check among candidate genes in natural apomicts and a high-throughput analysis of sexual mutants.


Sexual Plant Reproduction | 2001

Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation

Emidio Albertini; A. Porceddu; Francesco Ferranti; Lara Reale; Gianni Barcaccia; Bruno Romano; Mario Falcinelli

Despite the potential that apomixis has for agriculture, there is little information regarding the genetic control of its functional components. We carried out a cytohistological investigation on an F1 segregating population of Poa pratensis obtained from a cross between a sexual and an apomictic parent. About half of the F1 progeny plants were parthenogenic, as adjudicated by an auxin test. The degree of parthenogenesis ranged from 1.44% to 92.9%. Apospory was detected in parthenogenetic plants as well as in two non-parthenogenetic individuals. These results indicate that two distinct genetic factors control apospory and parthenogenesis in P. pratensis and that apospory and parthenogenesis may be developmentally uncoupled


Plant Journal | 2010

Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L.

Anna Schallau; Francesco Arzenton; Amal J. Johnston; Urs Hähnel; David Koszegi; Frank R. Blattner; Lothar Altschmied; Georg Haberer; Gianni Barcaccia; Helmut Bäumlein

The introduction of apomixis - seed formation without fertilization - into crop plants is a long-held goal of breeding research, since it would allow for the ready fixation of heterozygosity. The genetic basis of apomixis, whether of the aposporous or the diplosporous type, is still only poorly understood. Hypericum perforatum (St Johns wort), a plant with a small genome and a short generation time, can be aposporous and/or parthenogenetic, and so represents an interesting model dicot for apomixis research. Here we describe a genetic analysis which first defined and then isolated a locus (designated HAPPY for Hypericum APOSPORY) associated with apospory. Amplified fragment length polymorphism (AFLP) profiling was used to generate a cleaved amplified polymorphic sequence (CAPS) marker for HAPPY which co-segregated with apospory but not with parthenogenesis, showing that these two components of apomixis are independently controlled. Apospory was inherited as a dominant simplex gene at the tetraploid level. Part of the HAPPY sequence is homologous to the Arabidopsis thaliana gene ARI7 encoding the ring finger protein ARIADNE7. This protein is predicted to be involved in various regulatory processes, including ubiquitin-mediated protein degradation. While the aposporous and sexual alleles of the HAPPY component HpARI were co-expressed in many parts of the plant, the gene product of the apomicts allele is truncated. Cloning HpARI represents the first step towards the full characterization of HAPPY and the elucidation of the molecular mechanisms underlying apomixis in H. perforatum.


Genome | 2000

Inheritance and mapping of 2n-egg production in diploid alfalfa

Gianni Barcaccia; Emidio Albertini; D. Rosellini; S. Tavoletti; F. Veronesi

The production of eggs with the sporophytic chromosome number (2n eggs) in diploid alfalfa (Medicago spp.) is mainly associated with the absence of cytokinesis after restitutional meiosis. The formation of 2n eggs through diplosporic apomeiosis has also been documented in a diploid mutant of M. sativa subsp. falcata (L.) Arcang. (2n = 2x = 16), named PG-F9. Molecular tagging of 2n-egg formation appears to be an essential step towards marker-assisted breeding and map-based cloning strategies aimed at investigating and manipulating reproductive mutants of the M. sativa complex. We made controlled crosses between PG-F9 and three wild type plants of M. sativa subsp. coerulea (Less.) Schm. (2n = 2x = 16) and then hand-pollinated the F1 progenies with tetraploid plants of M. sativa subsp. sativa L. (2n = 4x = 32). As a triploid embryo block prevents the formation of 3x progenies in alfalfa because of endosperm imbalance, and owing to the negligible selfing rate, seed set in 2x-4x crosses was used to discriminate the genetic capacity for 2n-egg production. F1 plants that exhibited null or very low seed sets were classified as normal egg producers and plants with high seed sets as 2n-egg producers. A bulked segregant analysis (BSA) with RAPD (random amplified polymorphic DNA), ISSR (inter-simple sequence repeat), and AFLP (amplified fragment length polymorphism) markers was employed to identify a genetic linkage group related to the 2n-egg trait using one of the three F1 progenies. This approach enabled us to detect a paternal ISSR marker of 610 bp, generated by primer (CA)8-GC, located 9.8 cM from a putative gene (termed Tne1, two-n-eggs) that in its recessive form determines 2n eggs and a 30% recombination genomic window surrounding the target locus. Eight additional RAPD and AFLP markers, seven of maternal, and one of paternal origin, significantly co-segregated with the trait under investigation. The minimum number of quantitative trait loci (QTLs) controlling seed set in 2x-4x crosses was estimated by ANOVA and regression analysis. Four maternal and three paternal independent molecular markers significantly affected the trait. A paternal RAPD marker allele, mapped in the same linkage group of Tne1, explained 43% of the variation for seed set in 2x-4x crosses indicating the presence of a major QTL. A map of the PG-F9 chromosome regions carrying the minor genes that determine the expression level of 2n eggs was constructed using selected RAPD and AFLP markers. Two of these genes were linked to previously mapped RFLP loci belonging to groups 1 and 8. Molecular and genetic evidence support the involvement of at least five genes.

Collaboration


Dive into the Gianni Barcaccia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margherita Lucchin

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciana Baldoni

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margherita Lucchin

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge