Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gianni Cesareni is active.

Publication


Featured researches published by Gianni Cesareni.


Nucleic Acids Research | 2010

MINT, the molecular interaction database: 2012 update

Luana Licata; Leonardo Briganti; Daniele Peluso; Livia Perfetto; Marta Iannuccelli; Eugenia Galeota; Francesca Sacco; Anita Palma; Aurelio Pio Nardozza; Elena Santonico; Luisa Castagnoli; Gianni Cesareni

MINT (http://mint.bio.uniroma2.it/mint) is a public repository for molecular interactions reported in peer-reviewed journals. Since its last report, MINT has grown considerably in size and evolved in scope to meet the requirements of its users. The main changes include a more precise definition of the curation policy and the development of an enhanced and user-friendly interface to facilitate the analysis of the ever-growing interaction dataset. MINT has adopted the PSI-MI standards for the annotation and for the representation of molecular interactions and is a member of the IMEx consortium.


Nucleic Acids Research | 2004

IntAct: an open source molecular interaction database

Henning Hermjakob; Luisa Montecchi-Palazzi; Chris Lewington; Sugath Mudali; Samuel Kerrien; Sandra Orchard; Martin Vingron; Bernd Roechert; Peter Roepstorff; Alfonso Valencia; Hanah Margalit; John Armstrong; Amos Marc Bairoch; Gianni Cesareni; David James Sherman; Rolf Apweiler

IntAct provides an open source database and toolkit for the storage, presentation and analysis of protein interactions. The web interface provides both textual and graphical representations of protein interactions, and allows exploring interaction networks in the context of the GO annotations of the interacting proteins. A web service allows direct computational access to retrieve interaction networks in XML format. IntAct currently contains approximately 2200 binary and complex interactions imported from the literature and curated in collaboration with the Swiss-Prot team, making intensive use of controlled vocabularies to ensure data consistency. All IntAct software, data and controlled vocabularies are available at http://www.ebi.ac.uk/intact.


FEBS Letters | 2002

MINT: a Molecular INTeraction database

Andreas Zanzoni; Luisa Montecchi-Palazzi; Michele Quondam; Gabriele Ausiello; Manuela Helmer-Citterich; Gianni Cesareni

Protein interaction databases represent unique tools to store, in a computer readable form, the protein interaction information disseminated in the scientific literature. Well organized and easily accessible databases permit the easy retrieval and analysis of large interaction data sets. Here we present MINT, a database (http://cbm.bio.uniroma2.it/mint/index.html) designed to store data on functional interactions between proteins. Beyond cataloguing binary complexes, MINT was conceived to store other types of functional interactions, including enzymatic modifications of one of the partners. Release 1.0 of MINT focuses on experimentally verified protein–protein interactions. Both direct and indirect relationships are considered. Furthermore, MINT aims at being exhaustive in the description of the interaction and, whenever available, information about kinetic and binding constants and about the domains participating in the interaction is included in the entry. MINT consists of entries extracted from the scientific literature by expert curators assisted by ‘MINT Assistant’, a software that targets abstracts containing interaction information and presents them to the curator in a user‐friendly format. The interaction data can be easily extracted and viewed graphically through ‘MINT Viewer’. Presently MINT contains 4568 interactions, 782 of which are indirect or genetic interactions.


Nucleic Acids Research | 2003

ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins

Pål Puntervoll; Rune Linding; Christine Gemünd; Sophie Chabanis-Davidson; Morten Mattingsdal; Scott Cameron; David M. A. Martin; Gabriele Ausiello; Barbara Brannetti; Anna Costantini; Fabrizio Ferrè; Vincenza Maselli; Allegra Via; Gianni Cesareni; Francesca Diella; Giulio Superti-Furga; Lucjan S. Wyrwicz; Chenna Ramu; Caroline McGuigan; Rambabu Gudavalli; Ivica Letunic; Peer Bork; Leszek Rychlewski; Bernhard Kuster; Manuela Helmer-Citterich; William N. Hunter; Rein Aasland; Toby J. Gibson

Multidomain proteins predominate in eukaryotic proteomes. Individual functions assigned to different sequence segments combine to create a complex function for the whole protein. While on-line resources are available for revealing globular domains in sequences, there has hitherto been no comprehensive collection of small functional sites/motifs comparable to the globular domain resources, yet these are as important for the function of multidomain proteins. Short linear peptide motifs are used for cell compartment targeting, protein-protein interaction, regulation by phosphorylation, acetylation, glycosylation and a host of other post-translational modifications. ELM, the Eukaryotic Linear Motif server at http://elm.eu.org/, is a new bioinformatics resource for investigating candidate short non-globular functional motifs in eukaryotic proteins, aiming to fill the void in bioinformatics tools. Sequence comparisons with short motifs are difficult to evaluate because the usual significance assessments are inappropriate. Therefore the server is implemented with several logical filters to eliminate false positives. Current filters are for cell compartment, globular domain clash and taxonomic range. In favourable cases, the filters can reduce the number of retained matches by an order of magnitude or more.


Nucleic Acids Research | 2014

The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases

Sandra Orchard; Mais G. Ammari; Bruno Aranda; L Breuza; Leonardo Briganti; Fiona Broackes-Carter; Nancy H. Campbell; Gayatri Chavali; Carol Chen; Noemi del-Toro; Margaret Duesbury; Marine Dumousseau; Eugenia Galeota; Ursula Hinz; Marta Iannuccelli; Sruthi Jagannathan; Rafael C. Jimenez; Jyoti Khadake; Astrid Lagreid; Luana Licata; Ruth C. Lovering; Birgit Meldal; Anna N. Melidoni; Mila Milagros; Daniele Peluso; Livia Perfetto; Pablo Porras; Arathi Raghunath; Sylvie Ricard-Blum; Bernd Roechert

IntAct (freely available at http://www.ebi.ac.uk/intact) is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. IntAct has developed a sophisticated web-based curation tool, capable of supporting both IMEx- and MIMIx-level curation. This tool is now utilized by multiple additional curation teams, all of whom annotate data directly into the IntAct database. Members of the IntAct team supply appropriate levels of training, perform quality control on entries and take responsibility for long-term data maintenance. Recently, the MINT and IntAct databases decided to merge their separate efforts to make optimal use of limited developer resources and maximize the curation output. All data manually curated by the MINT curators have been moved into the IntAct database at EMBL-EBI and are merged with the existing IntAct dataset. Both IntAct and MINT are active contributors to the IMEx consortium (http://www.imexconsortium.org).


Journal of Molecular Biology | 1991

Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector

Franco Felici; Luisa Castagnoli; Andrea Musacchio; Roberto Jappelli; Gianni Cesareni

Practically any oligopeptide can be exposed on the surface of the bacteriophage capsid by fusion to the major coat protein of filamentous bacteriophages. A phage expressing a particular peptide tag can be selected from a mixture of tens of millions of clones, exposing oligopeptides of random sequence, by affinity purification with a protein ligand. In this respect, pVIII can be used as an alternative and complement to the exposition vectors based on the product of gene III (pIII). We have constructed a phagemid vector that contains gene VIII under the control of the pLac promoter. This vector can be conveniently used to construct libraries of oligopeptides with a random amino acid sequence. An antipeptide monoclonal antibody was used to affinity-purify phagemids exposing oligopeptides which can interact with the monoclonal antibody. DNA sequencing of the amino terminus of gene VIII of the recovered clones predicts the synthesis of hybrid proteins whose aminoterminal amino acid sequence is related to that of the oligopeptide used to raise the antibody. In other words, only oligopeptides that bind a very small portion of the immunoglobulin G surface are affinity-purified by this method, implying that the antigen binding site possesses molecular properties that renders it much stickier than the remainder of the molecule.


Science Signaling | 2008

Linear Motif Atlas for Phosphorylation-Dependent Signaling

Martin L. Miller; Lars Juhl Jensen; Francesca Diella; Claus Jørgensen; Michele Tinti; Lei Li; Marilyn Hsiung; Sirlester A. Parker; Jennifer Bordeaux; Thomas Sicheritz-Pontén; Marina Olhovsky; Adrian Pasculescu; Jes Alexander; Stefan Knapp; Nikolaj Blom; Peer Bork; Shawn S.-C. Li; Gianni Cesareni; Tony Pawson; Benjamin E. Turk; Michael B. Yaffe; Søren Brunak; Rune Linding

Created with both in vitro and in vivo data, NetPhorest is an atlas of consensus sequence motifs for 179 kinases and 104 phosphorylation-dependent binding domains and reveals new insight into phosphorylation-dependent signaling. An Atlas of Phosphorylation NetPhorest is a community resource that uses phylogenetic trees to organize data from both in vivo and in vitro experiments to derive sequence specificities for 179 kinases and 104 domains (SH2, PTB, BRCT, WW, and 14–3–3) that bind to phosphorylated sites. The resulting atlas of linear motifs revealed that oncogenic kinases tend to be less specific in the target sequences they phosphorylate than their non-oncogenic counterparts, that autophosphorylation sites tend to be more variable than other substrates of a given kinase, and that coupling interaction domains with kinase domains may allow phosphorylation site specificity to be low while still maintaining substrate specificity. Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory networks underlying cellular responses to environmental cues. However, matching these sites to the kinases that phosphorylate them and the phosphorylation-dependent binding domains that may subsequently bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2), phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14–3–3]. The atlas reveals new aspects of signaling systems, including the observation that tyrosine kinases mutated in cancer have lower specificity than their non-oncogenic relatives. The resource is maintained by an automated pipeline, which uses phylogenetic trees to structure the currently available in vivo and in vitro data to derive probabilistic sequence models of linear motifs. The atlas is available as a community resource (http://netphorest.info).


Journal of Biological Chemistry | 1998

Intersectin, a Novel Adaptor Protein with Two Eps15 Homology and Five Src Homology 3 Domains

Montarop Yamabhai; Noah G. Hoffman; Nancy L. Hardison; Peter S. McPherson; Luisa Castagnoli; Gianni Cesareni; Brian K. Kay

We screened a Xenopus laevis oocyte cDNA expression library with a Src homology 3 (SH3) class II peptide ligand and identified a 1270-amino acid-long protein containing two Eps15 homology (EH) domains, a central coiled-coil region, and five SH3 domains. We named this protein Intersectin, because it potentially brings together EH and SH3 domain-binding proteins into a macromolecular complex. The ligand preference of the EH domains were deduced to be asparajine-proline-phenylalanine (NPF) or cyclized NPF (CX 1–2NPFXXC), depending on the type of phage-displayed combinatorial peptide library used. Screens of a mouse embryo cDNA library with the EH domains of Intersectin yielded clones for the Rev-associated binding/Rev-interacting protein (RAB/Rip) and two novel proteins, which we named Intersectin-binding proteins (Ibps) 1 and 2. All three proteins contain internal and C-terminal NPF peptide sequences, and Ibp1 and Ibp2 also contain putative clathrin-binding sites. Deletion of the C-terminal sequence, NPFL-COOH, from RAB/Rip eliminated EH domain binding, whereas fusion of the same peptide sequence to glutathione S-transferase generated strong binding to the EH domains of Intersectin. Several experiments support the conclusion that the free carboxylate group contributes to binding of the NPFL motif at the C terminus of RAB/Rip to the EH domains of Intersectin. Finally, affinity selection experiments with the SH3 domains of Intersectin identified two endocytic proteins, dynamin and synaptojanin, as potential interacting proteins. We propose that Intersectin is a component of the endocytic machinery.


The EMBO Journal | 2005

The ubiquitin-protein ligase Itch regulates p73 stability

Mario Rossi; Vincenzo De Laurenzi; Eliana Munarriz; Douglas R. Green; Yun-Cai Liu; Karen H. Vousden; Gianni Cesareni; Gerry Melino

p73, a member of the p53 family of transcription factors, is upregulated in response to DNA damage, inducing cell cycle arrest and apoptosis. Besides indications that this p73 response is post‐transcriptional, little is known about the underlying molecular mechanisms of p73 protein degradation. Ubiquitination and proteasomal‐dependent degradation of p53 are regulated by its transcriptional target MDM2. However, unlike p53, p73 binds to, but is not degraded by, MDM2. Here we describe the binding of p73 to Itch, a Hect ubiquitin–protein ligase. Itch selectively binds and ubiquitinates p73 but not p53; this results in the rapid proteasome‐dependent degradation of p73. Upon DNA damage Itch itself is downregulated, allowing p73 protein levels to rise and thus interfere with p73 function. In conclusion, we have identified a key mechanism in the control of p73 protein levels both in normal as well as in stress conditions.


Nature Biotechnology | 2007

The minimum information required for reporting a molecular interaction experiment (MIMIx)

Sandra Orchard; Lukasz Salwinski; Samuel Kerrien; Luisa Montecchi-Palazzi; Matthias Oesterheld; Volker Stümpflen; Arnaud Ceol; Andrew Chatr-aryamontri; John Armstrong; Peter Woollard; John J. Salama; Susan Moore; Jérôme Wojcik; Gary D. Bader; Marc Vidal; Michael E. Cusick; Mark Gerstein; Anne-Claude Gavin; Giulio Superti-Furga; Jack Greenblatt; Joel S. Bader; Peter Uetz; Mike Tyers; Pierre Legrain; Stan Fields; Nicola Mulder; Michael K. Gilson; Michael Niepmann; Lyle D Burgoon; Javier De Las Rivas

A wealth of molecular interaction data is available in the literature, ranging from large-scale datasets to a single interaction confirmed by several different techniques. These data are all too often reported either as free text or in tables of variable format, and are often missing key pieces of information essential for a full understanding of the experiment. Here we propose MIMIx, the minimum information required for reporting a molecular interaction experiment. Adherence to these reporting guidelines will result in publications of increased clarity and usefulness to the scientific community and will support the rapid, systematic capture of molecular interaction data in public databases, thereby improving access to valuable interaction data.

Collaboration


Dive into the Gianni Cesareni's collaboration.

Top Co-Authors

Avatar

Luisa Castagnoli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Livia Perfetto

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luana Licata

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Arnaud Ceol

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Elena Santonico

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesca Sacco

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Serena Paoluzi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alberto Calderone

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge