Gianpiero Gueli Alletti
Julius Kühn-Institut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianpiero Gueli Alletti.
Applied and Environmental Microbiology | 2015
Jörg T. Wennmann; Tim Köhler; Gianpiero Gueli Alletti; Johannes A. Jehle
ABSTRACT Mixed infections of insect larvae with different baculoviruses are occasionally found. They are of interest from an evolutionary as well as from a practical point of view when baculoviruses are applied as biocontrol agents. Here, we report mixed-infection studies of neonate larvae of the common cutworm, Agrotis segetum, with two baculoviruses, Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV). By applying quantitative PCR (qPCR) analysis, coinfections of individual larvae were demonstrated, and occlusion body (OB) production within singly infected and coinfected larvae was determined in individual larvae. Mixtures of viruses did not lead to changes in mortality rates compared with rates of single-virus treatments, indicating an independent action within host larvae under our experimental conditions. AgseNPV-B-infected larvae showed an increase in OB production during 2 weeks of infection, whereas the number of AgseGV OBs did not change from the first week to the second week. Fewer OBs of both viruses were produced in coinfections than in singly infected larvae, suggesting a competition of the two viruses for larval resources. Hence, no functional or economic advantage could be inferred from larval mortality and OB production from mixed infections of A. segetum larvae with AgseNPV-B and AgseGV.
Viruses | 2017
Jörg T. Wennmann; Pit Radtke; Karolin E. Eberle; Gianpiero Gueli Alletti; Johannes A. Jehle
Six complete genome sequences of Cydia pomonella granulovirus (CpGV) isolates from Mexico (CpGV-M and CpGV-M1), England (CpGV-E2), Iran (CpGV-I07 and CpGV-I12), and Canada (CpGV-S) were aligned and analyzed for genetic diversity and evolutionary processes. The selected CpGV isolates represented recently identified phylogenetic lineages of CpGV, namely, the genome groups A to E. The genomes ranged from 120,816 bp to 124,269 bp. Several common differences between CpGV-M, -E2, -I07, -I12 and -S to CpGV-M1, the first sequenced and published CpGV isolate, were highlighted. Phylogenetic analysis based on the aligned genome sequences grouped CpGV-M and CpGV-I12 as the most derived lineages, followed by CpGV-E2, CpGV-S and CpGV-I07, which represent the most basal lineages. All of the genomes shared a high degree of co-linearity, with a common setup of 137 (CpGV-I07) to 142 (CpGV-M and -I12) open reading frames with no translocations. An overall trend of increasing genome size and a decrease in GC content was observed, from the most basal lineage (CpGV-I07) to the most derived (CpGV-I12). A total number of 788 positions of single nucleotide polymorphisms (SNPs) were determined and used to create a genome-wide SNP map of CpGV. Of the total amount of SNPs, 534 positions were specific for exactly one of either isolate CpGV-M, -E2, -I07, -I12 or -S, which allowed the SNP-based detection and identification of all known CpGV isolates.
Journal of Invertebrate Pathology | 2017
Gianpiero Gueli Alletti; Marina Eigenbrod; Eric B. Carstens; Regina G. Kleespies; Johannes A. Jehle
The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses.
Viruses | 2017
Gianpiero Gueli Alletti; Annette Sauer; Birgit Weihrauch; Eva Fritsch; Karin Undorf-Spahn; Jörg T. Wennmann; Johannes A. Jehle
The use of Cydia pomonella granulovirus (CpGV) isolates as biological control agents of codling moth (CM) larvae is important in organic and integrated pome fruit production worldwide. The commercially available isolates CpGV-0006, CpGV-R5, and CpGV-V15 have been selected for the control of CpGV resistant CM populations in Europe. In infection experiments, CpGV-0006 and CpGV-R5 were able to break type I resistance and to a lower extent also type III resistance, whereas CpGV-V15 overcame type I and the rarely occurring type II and type III resistance. The genetic background of the three isolates was investigated with next generation sequencing (NGS) tools by comparing their nucleotide compositions to whole genome alignments of five CpGV isolates representing the known genetic diversity of the CpGV genome groups A to E. Based on the distribution of single nucleotide polymorphisms (SNPs) in Illumina sequencing reads, we found that the two isolates CpGV-0006 and CpGV-R5 have highly similar genome group compositions, consisting of about two thirds of the CpGV genome group E and one third of genome group A. In contrast, CpGV-V15 is composed of equal parts of CpGV genome group B and E. According to the identified genetic composition of these isolates, their efficacy towards different resistance types can be explained and predictions on the success of resistance management strategies in resistant CM populations can be made.
Journal of Invertebrate Pathology | 2017
Gianpiero Gueli Alletti; Eric B. Carstens; Birgit Weihrauch; Johannes A. Jehle
Both Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum granulovirus (AgseGV) belong to a cluster of four baculoviruses that are infective for different Agrotis species. Belonging further to different baculovirus genera, namely Alphabaculovirus and Betabaculovirus, respectively, AgseNPV-B and AgseGV are candidates to investigate virus interactions in co-infections. However, for the investigation of virus interactions on a cellular level, permissive insect cell-lines are needed. The cell line AiE1611T deriving from Agrotisipsilon eggs has been shown to be permissive for several Alphabaculovirus isolates. In this study, virus replication was followed based on microscopic analysis of infected and transfected cells, as well as on a molecular level by PCR of DNA and cDNA of selected baculovirus transcripts. While the permissivity was not verified for AgseGV, AgseNPV-B produced occlusion bodies in both infection with hemolymph of infected larvae and Lipofectamin transfection with AgseNPV-B genomic DNA. In addition to the possibility to investigate virus interaction of AgseNPV-B with other alphabaculoviruses, the permissivity of AiE1611T for AgseNPV-B further offers the possibility a biological selection to separate AgseNPV-B from AgseGV.
Virus Genes | 2015
Jörg T. Wennmann; Gianpiero Gueli Alletti; Johannes A. Jehle
New Challenges for Biological Control : 15th Meeting of the IOBC-WPRS Working Group “Microbial and Nematode Control of Invertebrate Pests”: Programme and Abstract Book ; June 7 - 11, 2015, Riga, Latvia | 2015
Gianpiero Gueli Alletti; Jörg T. Wennmann; Eric B. Carstens; Johannes A. Jehle
International Congress on Invertebrate Pathology and Microbial Control and the 48th Annual Meeting of the Society for Invertebrate Pathology ; Vancouver, Canada ; August 9-13, 2015 | 2015
Jehle, Johannes, A.; Monnheimer, Laurin, R.; Gianpiero Gueli Alletti; Wennmann, Jörg, T.
Berichte aus dem Julius Kühn-Institut | 2014
Gianpiero Gueli Alletti; Jörg T. Wennmann; Johannes A. Jehle
Berichte aus dem Julius Kühn-Institut | 2014
Laurin R. Monnheimer; Gianpiero Gueli Alletti; Johannes A. Jehle