Gianrico Spagnuolo
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gianrico Spagnuolo.
Journal of Dental Research | 2006
Helmut Schweikl; Gianrico Spagnuolo; Gottfried Schmalz
Monomers are released from dental resin materials, and thus cause adverse biological effects in mammalian cells. Cytotoxicity and genotoxicity of some of these methacrylates have been identified in a vast number of investigations during the last decade. It has been well-established that the co-monomer triethylene glycol dimethacrylate (TEGDMA) causes gene mutations in vitro. The formation of micronuclei is indicative of chromosomal damage and the induction of DNA strand breaks detected with monomers like TEGDMA and 2-hydroxyethyl methacrylate (HEMA). As a consequence of DNA damage, the mammalian cell cycle was delayed in both G1 and G2/M phases, depending on the concentrations of the monomers. Yet, the mechanisms underlying the genetic and cellular toxicology of resin monomers have remained obscure until recently. New findings indicate that increased oxidative stress results in an impairment of the cellular pro- and anti-oxidant redox balance caused by monomers. It has been demonstrated that monomers reduced the levels of the natural radical scavenger glutathione (GSH), which protects cell structures from damage caused by reactive oxygen species (ROS). Depletion of the intracellular GSH pool may then significantly contribute to cytotoxicity, because a related increase in ROS levels can activate pathways leading to apoptosis. Complementary, cytotoxic, and genotoxic effects of TEGDMA and HEMA are inhibited in the presence of ROS scavengers like N-acetylcysteine (NAC), ascorbate, and Trolox (vitamin E). Elevated intracellular levels of ROS can also activate a complex network of redox-responsive macromolecules, including redox-sensitive transcription factors like nuclear factor kappaB (NF-κB). It has been shown that NF-κB is activated probably to counteract HEMA-induced apoptosis. The induction of apoptosis by TEGDMA in human pulp cells has been associated with an inhibition of the phosphatidylinositol 3-kinase (PI3-K) cell-survival signaling pathway. Although the details of the mechanisms leading to cell death, genotoxicity, and cell-cycle delay are not completely understood, resin monomers may be able to alter the functions of the cells of the oral cavity. Pathways regulating cellular homeostasis, dentinogenesis, or tissue repair may be modified by monomers at concentrations well below those which cause acute cytotoxicity.
Biomaterials | 2013
Stephanie Krifka; Gianrico Spagnuolo; Gottfried Schmalz; Helmut Schweikl
Dental composite resins are biomaterials commonly used to aesthetically restore the structure and function of teeth impaired by caries, erosion, or fracture. Residual monomers released from resin restorations as a result of incomplete polymerization processes interact with living oral tissues. Monomers like triethylene glycol dimethacrylate (TEGDMA) or 2-hydroxylethyl methacrylate (HEMA) are cytotoxic via apoptosis, induce genotoxic effects, and delay the cell cycle. Monomers also influence the response of cells of the innate immune system, inhibit specific odontoblast cell functions, or delay the odontogenic differentiation and mineralization processes in pulp-derived cells including stem cells. These observations indicate that resin monomers act as environmental stressors which inevitably disturb regulatory cellular networks through interference with signal transduction pathways. We hypothesize that an understanding of the cellular mechanisms underlying these phenomena will provide a better estimation of the consequences associated with dental therapy using composite materials, and lead to innovative therapeutic strategies and improved materials being used at tissue interfaces within the oral cavity. Current findings strongly suggest that monomers enhance the formation of reactive oxygen species (ROS), which is most likely the cause of biological reactions activated by dental composites and resin monomers. The aim of the present review manuscript is to discuss adaptive cell responses to oxidative stress caused by monomers. The particular significance of a tightly controlled network of non-enzymatic as well as enzymatic antioxidants for the regulation of cellular redox homeostasis and antioxidant defense in monomer-exposed cells will be addressed. The expression of ROS-metabolizing antioxidant enzymes like superoxide dismutase (SOD1), glutathione peroxidase (GPx1/2), and catalase in cells exposed to monomers will be discussed with particular emphasis on the role of glutathione (GSH), which is the major non-enzymatic antioxidant. The causal relationship between vital cell functions like the regulation of cell survival or cell death in monomer-treated cell cultures and the availability of GSH will be highlighted. We will also consider the influence of monomer-induced oxidative stress on central signal transduction pathways including mitogen-activated protein kinases (MAPK) ERK1/2, p38, and JNK as well as the stress-activated transcription factors downstream Elk-1, ATF-2, ATF-3, and cJun. Finally, we address signaling pathways originating from monomer-induced DNA damage including the activation of ATM (ataxia-telangiectasia mutated), Chk2, p53, p21, and H2AX. The understanding of the mechanisms underlying adaptive cell responses will stimulate a constructive debate on the development of smart dental restorative materials which come into contact with oral tissues and effective strategies in dental therapy.
Journal of Dental Research | 2004
Gianrico Spagnuolo; Kerstin M. Galler; Gottfried Schmalz; C. Cosentino; S. Rengo; Helmut Schweikl
Cytotoxicity of triethylene glycol dimethacrylate (TEGDMA), a co-monomer of dental resinous restorative materials, is firmly established in vitro, but the molecular mechanisms are unknown. Here we examined apoptosis and necrosis induced by TEGDMA in human primary pulp cells. The levels of apoptotic and necrotic cell populations differentially increased after exposure to increasing concentrations of TEGDMA. A two-fold increase in the percentage of apoptotic cells was induced by 1 mmol/L TEGDMA. However, a population shift among cells in apoptosis and necrosis was detected when cell cultures were exposed to 2 mmol/L TEGDMA. Inhibition of the MAP Kinase/ERK pathway had no influence on cell survival, but inhibition of phosphatidylinositol 3 kinase (PI3-Kinase; Akt/protein kinase B) by LY294002 amplified TEGDMA-induced apoptosis. Moreover, Akt phosphorylation was inhibited in the presence of TEGDMA. These results suggest that depression of PI3K signaling may be a primary target in TEGDMA-induced apoptosis.
Biomaterials | 2008
Helmut Schweikl; Karl-Anton Hiller; Alexander Eckhardt; Carola Bolay; Gianrico Spagnuolo; Thomas Stempfl; Gottfried Schmalz
Triethylene glycol dimethacrylate (TEGDMA) is a comonomer that is released from dental resin-based materials into hydrophilic solvents. The compound reduces cell vitality, and causes genotoxicity in mammalian cells in vitro. Here, we used gene expression profiling, combined with pathway analysis tools, to identify the molecular events associated with TEGDMA cytotoxicity in human fibroblasts using Affymetrix HG-U133A 2.0 GeneChip arrays. Increased ROS production and a cell cycle delay caused by 3mm TEGDMA after a 6h exposure were related to a cell response at the transcriptional level. The predominant biological processes associated with the genes that were differentially expressed in untreated and treated cell cultures included oxidative stress, cellular growth, proliferation and morphology, cell death, gene expression as well as DNA replication and repair. The most significantly upregulated genes were GEM (17-fold), KLHL24, DDIT4, TGIF, DUSP5 and ATF3, which are all related to the regulation of the cell structure, stress response, and cell proliferation. TXNIP was the most downregulated transcript (five-fold), whose gene product regulates the cellular redox balance. The downregulation of NRG1, ASPM, FBXO5, and PLK2 is linked to the regulation of cell proliferation and cell structure. The underlying mechanisms of the up- and downregulation of genes seem to be activated by the production of ROS, and the related regulation of the cellular redox balance disturbed in the presence of TEGDMA appears to be of the utmost importance. The coordinated induction of genes coding for oxidative stress response and antioxidant proteins is a critical mechanism of protection against TEGDMA-induced cell damage.
Biomaterials | 2009
Alexander Eckhardt; Nicol Gerstmayr; Karl-Anton Hiller; Carola Bolay; Claudia Waha; Gianrico Spagnuolo; Carlos Henrique Ribeiro Camargo; Gottfried Schmalz; Helmut Schweikl
The development of strategies for the protection of oral tissues against the adverse effects of resin monomers is primarily based on the elucidation of underlying molecular mechanisms. The generation of reactive oxygen species beyond the capacity of a balanced redox regulation in cells is probably a cause of cell damage. This study was designed to investigate oxidative DNA damage, the activation of ATM, a reporter of DNA damage, and redox-sensitive signal transduction through mitogen-activated protein kinases (MAPKs) by the monomer triethylene glycol dimethacrylate (TEGDMA). TEGDMA concentrations as high as 3-5 mM decreased THP-1 cell viability after a 24h and 48h exposure, and levels of 8-oxoguanine (8-oxoG) increased about 3- to 5-fold. The cells were partially protected from toxicity in the presence of N-acetylcysteine (NAC). TEGDMA also induced a delay in the cell cycle. The number of THP-1 cells increased about 2-fold in G1 phase and 5-fold in G2 phase in cultures treated with 3-5 mM TEGDMA. ATM was activated in THP-1 cells by TEGDMA. Likewise, the amounts of phospho-p38 were increased about 3-fold by 3 mM TEGDMA compared to untreated controls after a 24h and 48h exposure period, and phospho-ERK1/2 was induced in a very similar way. The activation of both MAPKs was inhibited by NAC. Our findings suggest that the activation of various signal transduction pathways is related to oxidative stress caused by a resin monomer. Signaling through ATM indicates oxidative DNA damage and the activation of MAPK pathways indicates oxidative stress-induced regulation of cell survival and apoptosis.
Biomaterials | 2012
Stephanie Krifka; Karl-Anton Hiller; Gianrico Spagnuolo; Anahid Jewett; Gottfried Schmalz; Helmut Schweikl
Resin monomers like 2-hydroxyethyl methacrylate (HEMA) disturb cell functions including responses of the innate immune system, mineralization and differentiation, or induce cell death via apoptosis. These phenomena are associated with oxidative stress and a reduction in the concentration of the antioxidant glutathione (GSH), resulting in imbalanced redox homeostasis. Thus far, the precise mechanism of how resin monomers interfere with cellular redox regulation is unknown. The present study provides insight into the induction of apoptosis and the differential expression of antioxidant enzymes depending on the availability of GSH. Buthionine sulfoximine (BSO) was used to inhibit GSH synthesis, while 2-oxothiazolidine-4-carboxylate (OTC), and N-acetylcysteine (NAC) as prodrugs supported GSH synthesis in RAW264.7 mouse macrophages exposed to HEMA (0-8 mm) for 24 h. The level of GSH was significantly decreased after cells were preincubated with BSO, and the formation of reactive oxygen species (ROS) increased in cultures subsequently exposed to HEMA. Apoptosis was drastically increased by BSO in HEMA-exposed cell cultures as well, but OTC and NAC retracted HEMA-induced cell death. These results show that dental monomer-induced apoptosis is causally related to the availability of GSH. The hydrogen peroxide decomposing enzymes glutathione peroxidase (GPx1/2) and catalase were differentially regulated in HEMA-exposed cultures. Expression of GPx1/2 was inhibited by HEMA and further reduced in the presence of BSO. SOD1 (superoxide dismutase) expression was inhibited in the presence of HEMA, and was decreased to an even greater extent by BSO, possibly due to H(2)O(2)-feedback inhibition. The expression of catalase was considerably up-regulated in HEMA-exposed cultures, implying that H(2)O(2) is the type of ROS that is significantly increased in monomer-exposed cells. OTC and NAC counteracted the effect of HEMA on GPx1/2, SOD1, and catalase expression. HO-1 (heme oxygenase) expression was strongly enhanced by HEMA, suggesting the need for further antioxidants like bilirubin to support enzyme activities that directly regulate H(2)O(2) equilibrium. Expression of the oxidoreductase thioredoxin (TRX1), the second major thiol-dependent antioxidant system in eukaryotic cells, was slightly reduced, while the oxygen-sensing protein HIF-1α was downregulated in HEMA-exposed cell cultures. These results indicate that cells and tissues actively respond to monomer-induced oxidative stress by the differential expression of enzymatic antioxidants.
Journal of Endodontics | 2010
Vincenzo D'Antò; Maria Patrizia Di Caprio; Gianluca Ametrano; Michele Simeone; Rengo S; Gianrico Spagnuolo
INTRODUCTION Mineral trioxide aggregate (MTA) is known to stimulate the hard tissue repair process. The purpose of this study was to evaluate the ability of MTA to support the adhesion, proliferation, and migration of human bone marrow-derived mesenchymal stem cells (hMSCs). METHODS White ProRoot MTA and white Portland cement were mixed and left to set 24 hours. MSCs were cultured on the samples and observed after 24 hours by confocal laser scanning microscopy (CLSM) by using the cytoskeleton marker CellTracker. Cell proliferation was evaluated by means of alamar blue assay in the presence and absence of differentiation medium during a period of 28 days, and cells seeded on polystyrene culture wells were the control. To assess the effect on migratory ability of hMSCs, a transwell migration assay was performed for 18 hours, positioning MTA and Portland cement in 6-well plates and the cells in 8-μm pore inserts. RESULTS hMSCs observed under CLSM showed attachment and spread activity on the upper surface of the MTA. Cell proliferation was significantly higher on MTA than on Portland cement. A rate proliferation increase of the MTA group compared with the control was observed after 14 days in presence of basic medium, whereas the same effect was reached after 21 days in presence of differentiation medium. Moreover, MTA was able to enhance cell migration significantly more than Portland cement. CONCLUSIONS Our findings suggest that MTA was able to assist hMSC adhesion, growth, and migration.
Journal of Endodontics | 2008
Gianrico Spagnuolo; Vincenzo D'Antò; Rosa Valletta; Caterina Strisciuglio; Gottfried Schmalz; Helmut Schweikl; Rengo S
Previous investigations have revealed that dental monomers could affect intracellular pathways leading to cell survival or cell death. Mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) might mediate cell responses as well as cell survival and apoptosis. The purpose of this study was to evaluate the effects of 2-hydroxyethyl methacrylate (HEMA) on the ERK1/2 and AKT pathways in human primary pulp fibroblasts (HPCs). HPCs were treated with various concentrations of HEMA, after which viability and reactive oxygen species levels were determined by flow cytometry with Annexin V-PI staining and 2,7-dichlorofluorescine diacetate, respectively. Whole-cell extracts were immunoblotted with anti-P-Akt or anti-P-ERK1/2. Cell viability decreased in a dose-dependent manner after HEMA exposure, showing a significant decrease with 10 mmol/L HEMA (p < .05). HEMA treatment resulted in a 4-fold increase in reactive oxygen species formation (p < .05). A short HEMA exposure (30-90 minutes) increased ERK1/2 phosphorylation, whereas a decrease in the AKT phosphorylation was observed. Selective inhibitors of the ERK (PD98059) and AKT (LY294002) pathways amplified HPC cell damage after HEMA exposure. Our findings demonstrated that HEMA exposure modulates the ERK and AKT pathways in different manners, and that in turn, they function in parallel to mediate pro-survival signaling in pulp cells subjected to HEMA cytotoxicity.
Biomaterials | 2010
Stephanie Krifka; Christine Petzel; Karl-Anton Hiller; Eva-Maria Frank; Claudi A. Bosl; Gianrico Spagnuolo; Franz-Xaver Reichl; Gottfried Schmalz; Helmut Schweikl
Triethylene glycol dimethacrylate (TEGDMA) is a resin monomer which is released from polymerized dental composite materials. It induced apoptosis in various target cells or inhibition of LPS-induced cytokine production in cells of the immune system after prolonged exposure. In these tissues, mitogen-activated protein kinases (MAPK) regulate signal transduction pathways that support cell survival and cytokine synthesis. The time-dependent regulation of MAPK as well as their linkage to the induction of apoptosis and cytokine release under the influence of resin monomers is unknown. It was the aim of the present study to investigate the kinetics of the up- or down-regulation of the MAPK p38, JNK, and ERK1/2, the induction of apoptosis and cytokine release in RAW264.7 mouse macrophages and human pulp-derived cells. ERK1/2, p38 and JNK were differentially activated by phosphorylation in the presence of lipopolysaccharide (0.1 microg/ml; LPS), a known inducer of MAPK activity, and TEGDMA (3 mM) as detected by Western blotting. In macrophages, ERK1/2 was activated about 6-fold by LPS, while no activation was observed in the presence of TEGDMA after 15 and 30 min. A slight activation of p38 was detected in cell cultures after short exposure to TEGDMA (30 min), but activated JNK was identified after LPS stimulation only. After a long 24 h exposure period, ERK1/2 and p38 were strongly activated by LPS, a combination of LPS/TEGDMA, and TEGDMA alone (15-20-fold). In human pulp-derived cells, ERK1/2 was phosphorylated after exposure to TEGDMA up to 2 h, and sustained activation of ERK1/2 as well as p38 (12-15-fold) was detected after prolonged exposure for 24 h. The LPS-induced, time-related increase in the secretion of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) as well as the anti-inflammatory IL-10 was instantaneously inhibited by TEGDMA in mouse macrophages. In parallel, the percentage of cells in macrophage cultures in the stage of apoptosis and necrosis increased with exposure period. Yet, in contrast to the inhibition of cytokine release, apoptosis and necrosis caused by LPS and TEGDMA was a late response in both mouse macrophages and human pulp-derived cells. From these data it appears as if MAPK activation, inhibition of cytokine release and the induction of apoptosis and necrosis by TEGDMA are tightly related. The direct causal correlation of these phenomena, however, requires further investigation.
Angle Orthodontist | 2012
Vincenzo D'Antò; Roberto Rongo; Gianluca Ametrano; Gianrico Spagnuolo; Paolo Manzo; Roberto Martina; Sergio Paduano; Rosa Valletta
OBJECTIVE To compare the surface roughness of different orthodontic archwires. MATERIALS AND METHODS Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukeys post hoc test (P < .05). RESULTS The Ra, Rms, and Mh values were expressed as the mean ± standard deviation. Among as-received archwires, the Stainless Steel (Ra = 36.6 ± 5.8; Rms = 48 ± 7.7; Mh = 328.1 ± 64) archwire was less rough than the others (ANOVA, P < .05). The Sentalloy High Aesthetic was the roughest (Ra = 133.5 ± 10.8; Rms = 165.8 ± 9.8; Mh = 949.6 ± 192.1) of the archwires. CONCLUSIONS The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.