Gideon Praveen Kumar
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gideon Praveen Kumar.
Computer-aided Design | 2013
Gideon Praveen Kumar; Fangsen Cui; Asawinee Danpinid; Boyang Su; Jimmy Kim Fatt Hon; Hwa Liang Leo
Percutaneous heart valve replacement is currently limited to the replacement of pulmonary and aortic valves in a targeted group of patients. Designing a heart valve for mitral valve replacement is further limited by its distinctive anatomical feature, which places a constraint on its range of design options. To overcome such limitations, the objectives of this study were to use computational modeling and simulation to design a new nitinol-based mitral valve stent and evaluate its crimpability and fatigue behavior. A self-expandable stent with new features that could address the issues of valve migration and paravalvular leaks was generated using the CAD-based conceptual modeling. Its expansion, crimpability, deployment patterns, and fatigue behavior were simulated and analyzed. Our simulations incorporated cyclic cardiac muscle loading, cyclic blood pressure loading, as well as cyclic valve-leaflet forces in the fatigue life assessment for mitral valves. Our results showed that the stent model passed the fatigue test under the aforementioned loading conditions. Our model provides a simple, fast and cost-effective tool to quantitatively determine the fatigue resistance of stent components. This is of great value to the design of new prosthetic heart valve models, as well as to surgeons involved in valve replacement.
Medical Engineering & Physics | 2014
Gideon Praveen Kumar; Fangsen Cui; Hui Qun Phang; Boyang Su; Hwa Liang Leo; Jimmy Kim Fatt Hon
Percutaneous heart valve replacement is gaining popularity, as more positive reports of satisfactory early clinical experiences are published. However this technique is mostly used for the replacement of pulmonary and aortic valves and less often for the repair and replacement of atrioventricular valves mainly due to their anatomical complexity. While the challenges posed by the complexity of the mitral annulus anatomy cannot be mitigated, it is possible to design mitral stents that could offer good anchorage and support to the valve prosthesis. This paper describes four new Nitinol based mitral valve designs with specific features intended to address migration and paravalvular leaks associated with mitral valve designs. The paper also describes maximum possible crimpability assessment of these mitral stent designs using a crimpability index formulation based on the various stent design parameters. The actual crimpability of the designs was further evaluated using finite element analysis (FEA). Furthermore, fatigue modeling and analysis was also done on these designs. One of the models was then coated with polytetrafluoroethylene (PTFE) with leaflets sutured and put to: (i) leaflet functional tests to check for proper coaptation of the leaflet and regurgitation leakages on a phantom model and (ii) anchorage test where the stented valve was deployed in an explanted pig heart. Simulations results showed that all the stents designs could be crimped to 18F without mechanical failure. Leaflet functional test results showed that the valve leaflets in the fabricated stented valve coapted properly and the regurgitation leakage being within acceptable limits. Deployment of the stented valve in the explanted heart showed that it anchors well in the mitral annulus. Based on these promising results of the one design tested, the other stent models proposed here were also considered to be promising for percutaneous replacement of mitral valves for the treatment of mitral regurgitation, by virtue of their key features as well as effective crimping. These models will be fabricated and put to all the aforementioned tests before being taken for animal trials.
Computers in Biology and Medicine | 2012
Gideon Praveen Kumar; Lazar Mathew
Vascular support structures are important devices for treating valve stenosis. Large population of patients is treated for valvular disease and the principal mode of treatment is the use of percutaneous valvuloplasty. Stent devices are proving to be an improved technology in minimal invasive cardiac surgery. This technology now accounts for 20% of treatments in Europe. This new technology provides highly effective results at minimal cost and short duration of hospitalization. During the development process, a number of specific designs and materials have come and gone, and a few have remained. Many design changes were successful, and many were not. This paper discusses the physical behavior of a hooked percutaneous aortic valve stent design using a finite element analysis. Specifically, the effects of crimping was simulated and analyzed for two types of realistic but different Nitinol materials (NITI-1 and NITI-2). The results show that both NITI-1 and NITI-2 had good crimping performance. The analysis performed in this paper may aid in understanding the stents displacement ranges when subjected to physiological pressures exerted by the heart and cardiac blood flow during abnormal cardiovascular conditions. It may also help to evaluate the suitability of a Nitinol for fabrication purposes.
PLOS ONE | 2015
Boyang Su; Foad Kabinejadian; Hui Qun Phang; Gideon Praveen Kumar; Fangsen Cui; Sangho Kim; Ru San Tan; Jimmy Kim Fatt Hon; John Carson Allen; Hwa Liang Leo; Liang Zhong
This work presents a numerical simulation of intraventricular flow after the implantation of a bileaflet mechanical heart valve at the mitral position. The left ventricle was simplified conceptually as a truncated prolate spheroid and its motion was prescribed based on that of a healthy subject. The rigid leaflet rotation was driven by the transmitral flow and hence the leaflet dynamics were solved using fluid-structure interaction approach. The simulation results showed that the bileaflet mechanical heart valve at the mitral position behaved similarly to that at the aortic position. Sudden area expansion near the aortic root initiated a clockwise anterior vortex, and the continuous injection of flow through the orifice resulted in further growth of the anterior vortex during diastole, which dominated the intraventricular flow. This flow feature is beneficial to preserving the flow momentum and redirecting the blood flow towards the aortic valve. To the best of our knowledge, this is the first attempt to numerically model intraventricular flow with the mechanical heart valve incorporated at the mitral position using a fluid-structure interaction approach. This study facilitates future patient-specific studies.
Artificial Organs | 2017
Gideon Praveen Kumar; Foad Kabinejadian; Jianfei Liu; Pei Ho; Hwa Liang Leo; Fangsen Cui
Our group recently developed a novel covered carotid stent that can prevent emboli while preserving the external carotid artery (ECA) branch blood flow. However, our recent in vitro side-branch ECA flow preservation tests on the covered stents revealed the need for further stent frame design improvements, including the consideration to crimp the stent to a low profile for the delivery of the stent system and having bigger cells. Hence, the current work aims to design new bare metal stents with bigger cell size to improve the crimpability and to accommodate more slits so that the side-branch flow could be further increased. Three new stent designs were analyzed using finite element analysis and benchmarked against two commercially available carotid stents in terms of their mechanical performances such as crimpability, radial strength, and flexibility. Results indicated that the new bare metal stent designs matched well against the commercial stents. Hence our new generation covered stents based on these designs can be expected to perform better in side-branch flow preservation without compromising on their mechanical performances.
Journal of Nanotechnology in Engineering and Medicine | 2010
Sree Vidhya; Gideon Praveen Kumar; Lazar Mathew
Piezoresistive actuation of a microcantilever induced by biomolecular binding such as DNA hybridization and antibody-antigen binding is an important principle useful in biosensing applications. As the magnitude of the forces exerted is small, increasing the sensitivity of the microcantilever becomes critical. In this paper, we are considering to achieve this by geometric variation of the cantilever. The sensitivity of the cantilever was improved so that the device can sense the presence of the antigen even if the magnitude of surface stresses over the microcantilever was very small. We consider a “T-shaped” cantilever that eliminates the disadvantages while improving the sensitivity simultaneously. An analysis of the cantilever using stainless steel and silicon has been performed using INTELLISUITE software (a microelectromechanical systems design and simulation package).
Scientific Reports | 2017
Duraisamy Shriram; Gideon Praveen Kumar; Fangsen Cui; Yee Han Dave Lee; Karupppasamy Subburaj
Artificial meniscal implants may replace severely injured meniscus and restore the normal functionality of the knee joint. Implant material stiffness and shape influence the longevity of implantations. This study, using 3D finite element analysis, aimed to evaluate the effects of material stiffness variations of anatomically shaped artificial meniscal implant in the knee joint. Finite element simulations were conducted on five different cases including intact knee, medial meniscectomized knee, and the knee joint with the meniscal implant with three distinct material stiffness. Cartilage contact pressures, compression stresses, shear stresses, and implant kinematics (medial-lateral and posterior-anterior displacement) were evaluated for an axial compressive load of 1150 N at full extension. Compared to the meniscectomized knee, the knee joint with the meniscal implant induced lower peak cartilage contact pressure and reduced the cartilage regions loaded with contact pressures greater than the peak cartilage contact pressure induced by the intact knee. Results of the current study also demonstrate that cartilage contact pressures and implant displacement are sensitive to the implant material stiffness. The meniscal implant with a stiffness of 11 MPa restores the intact knee contact mechanics, thereby reducing the risk of physiological damage to the articular cartilage.
Journal of Biomedical Materials Research Part B | 2017
Gideon Praveen Kumar; Mehdi Jafary-Zadeh; Rouhollah Tavakoli; Fangsen Cui
Self-expandable stents are widely used to restore blood flow in a diseased artery segment by keeping the artery open after angioplasty. Despite the prevalent use of conventional crystalline metallic alloys, for example, nitinol, to construct self-expandable stents, new biomaterials such as bulk metallic glasses (BMGs) are being actively pursued to improve stent performance. Here, we conducted a series of analyses including finite element analysis and molecular dynamics simulations to investigate the feasibility of using a prototypical Zr-based BMG for self-expandable stent applications. We model stent crimping of several designs for different percutaneous applications. Our results indicate that BMG-based stents with diamond-shaped crowns suffer from severe localization of plastic deformation and abrupt failure during crimping. As a possible solution, we further illustrate that such abrupt failure could be avoided in BMG-based stents without diamond shape crowns. This work would open a new horizon for a quest toward exploiting superior mechanical and functional properties of metallic glasses to design future stents.
Biomedical Engineering: Applications, Basis and Communications | 2010
Gideon Praveen Kumar; Lazar Mathew
Objective: To design a novel percutaneous stented valve and model its implantation in the aorta. Background: The dimensions of stented aortic valve components govern its ability to prevent backflow of blood into the left ventricle. Whilst the theoretical parameters for the best stent performance have already been established, an effective valve model and its suitability along with the stent are lacking. Methods: This article discusses the design of a stented valve suitable for percutaneous aortic valve replacement. Steps involved in 3D CAD-based geometric modeling of the stented aortic valve and its implantation in the aorta are presented. Conceptual designing of individual components was used to build the total geometric model. Results: A novel geometric model of percutaneous stented aortic valve was generated. The improved design enhances its performance during and after implantation. Conclusion: The blunt hooks in the stent model prevent its migration in either direction by getting embedded in the aortic endothelium. This novel stent aortic valve may be of great interest to designers of future bioprosthetic heart valve models, as well as to surgeons involved in minimally invasive valve surgeries.
Journal of Functional Biomaterials | 2018
Mehdi Jafary-Zadeh; Gideon Praveen Kumar; Paulo S. Branicio; Mohsen Seifi; John J. Lewandowski; Fangsen Cui
Functional and mechanical properties of novel biomaterials must be carefully evaluated to guarantee long-term biocompatibility and structural integrity of implantable medical devices. Owing to the combination of metallic bonding and amorphous structure, metallic glasses (MGs) exhibit extraordinary properties superior to conventional crystalline metallic alloys, placing them at the frontier of biomaterials research. MGs have potential to improve corrosion resistance, biocompatibility, strength, and longevity of biomedical implants, and hence are promising materials for cardiovascular stent applications. Nevertheless, while functional properties and biocompatibility of MGs have been widely investigated and validated, a solid understanding of their mechanical performance during different stages in stent applications is still scarce. In this review, we provide a brief, yet comprehensive account on the general aspects of MGs regarding their formation, processing, structure, mechanical, and chemical properties. More specifically, we focus on the additive manufacturing (AM) of MGs, their outstanding high strength and resilience, and their fatigue properties. The interconnection between processing, structure and mechanical behaviour of MGs is highlighted. We further review the main categories of cardiovascular stents, the required mechanical properties of each category, and the conventional materials have been using to address these requirements. Then, we bridge between the mechanical requirements of stents, structural properties of MGs, and the corresponding stent design caveats. In particular, we discuss our recent findings on the feasibility of using MGs in self-expandable stents where our results show that a metallic glass based aortic stent can be crimped without mechanical failure. We further justify the safe deployment of this stent in human descending aorta. It is our intent with this review to inspire biodevice developers toward the realization of MG-based stents.