Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giedre Grigelioniene is active.

Publication


Featured researches published by Giedre Grigelioniene.


BMC Genomics | 2007

Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus.

Caisa M. Hansson; Patrick G. Buckley; Giedre Grigelioniene; Arkadiusz Piotrowski; Anders R Hellström; Kiran Kumar Mantripragada; Caroline Jarbo; Tiit Mathiesen; Jan P. Dumanski

BackgroundMeningiomas are the most common intracranial neoplasias, representing a clinically and histopathologically heterogeneous group of tumors. The neurofibromatosis type 2 (NF2) tumor suppressor is the only gene known to be frequently involved in early development of meningiomas. The objective of this study was to identify genetic and/or epigenetic factors contributing to the development of these tumors. A large set of sporadic meningiomas were analyzed for presence of 22q macro-mutations using array-CGH in order to identify tumors carrying gene dosage aberrations not encompassing NF2. The NF2 locus was also comprehensively studied for point mutations within coding and conserved non-coding sequences. Furthermore, CpG methylation within the NF2 promoter region was thoroughly analyzed.ResultsMonosomy 22 was the predominant finding, detected in 47% of meningiomas. Thirteen percent of the tumors contained interstitial/terminal deletions and gains, present singly or in combinations. We defined at least two minimal overlapping regions outside the NF2 locus that are small enough (~550 kb and ~250 kb) to allow analysis of a limited number of candidate genes. Bialleinactivationo the NF2 gne was detected in 36% of meningiomas. Among the monosomy 22 cases, no additional NF2 mutations could be identified in 35% (17 out of 49) of tumors. Furthermore, the majority of tumors (9 out of 12) with interstitial/terminal deletions did not have any detectable NF2 mutations. Methylation within the NF2 promoter region was only identified at a single CpG site in one tumor sample.ConclusionWe confirmed previous findings of pronounced differences in mutation frequency between different histopathological subtypes. There is a higher frequency of biallelic NF2 inactivation in fibroblastic (52%) compared to meningothelial (18%) tumors. The presence of macro-mutations on 22q also shows marked differences between fibroblastic (86%) and meningothelial (39%) subtypes. Thus, inactivation of NF2, often combined with the presence of macro-mutation on 22q, is likely not as important for the development of the meningothelial subtype, as opposed to the fibroblastic form. Analysis of 40 CpG sites distributed within 750 bp of the promoter region suggests that NF2 promoter methylation does not play a major role in meningioma development.


American Journal of Human Genetics | 2009

Mutations in SPINT2 Cause a Syndromic Form of Congenital Sodium Diarrhea

Peter Heinz-Erian; Thomas Müller; Birgit Krabichler; Melanie Schranz; Christian Becker; Franz Rüschendorf; Peter Nürnberg; Bernard C. Rossier; Mihailo Vujic; I W Booth; Christer Holmberg; Cisca Wijmenga; Giedre Grigelioniene; C. M. Frank Kneepkens; Stefan Rosipal; Martin Mistrik; Matthias Kappler; Laurent Michaud; Ludwig-Christoph Dóczy; Victoria M. Siu; Marie Krantz; Heinz Zoller; Gerd Utermann; Andreas R. Janecke

Autosomal-recessive congenital sodium diarrhea (CSD) is characterized by perinatal onset of a persistent watery diarrhea with nonproportionally high fecal sodium excretion. Defective jejunal brush-border Na(+)/H(+) exchange has been reported in three sporadic patients, but the molecular basis of the disease has not been elucidated. We reviewed data from a large cohort of CSD patients (n = 24) and distinguished CSD associated with choanal or anal atresia, hypertelorism, and corneal erosions--i.e., a syndromic form of CSD--occurring in ten families from an isolated form--i.e., classic CSD--presenting in seven families. Patients from both groups have a high risk of mortality due to immediate electrolyte imbalances and complications from long-term parenteral nutrition in the first years of life, but survivors can eventually adapt to partial or complete enteral nutrition. A genome-wide SNP scan was applied and identified a homozygous c.593-1G-->A splicing mutation in SPINT2, encoding a Kunitz-type serine-protease inhibitor, in one extended kindred with syndromic CSD. The same mutation and four distinct, homozygous or compound heterozygous mutations (p.Y163C, c.1A-->T, c.337+2T-->C, c.553+2T-->A) were identified in all syndromic patients. No SPINT2 mutations were found in classic-CSD patients. SPINT2 mutations were associated with loss of protein synthesis or failure to inhibit the serine protease trypsin in vitro. We delineate syndromic CSD as a distinct disease entity caused by SPINT2 loss-of-function mutations. SPINT2 mutations might lead to an excess of yet unknown serine protease activity in affected tissues.


Human Genetics | 2001

Analysis of short stature homeobox-containing gene ( SHOX) and auxological phenotype in dyschondrosteosis and isolated Madelung deformity

Giedre Grigelioniene; Jacqueline Schoumans; Lo Neumeyer; Sten Ivarsson; Ole Eklöf; Ove Enkvist; Paul Tordai; Inger Fosdal; Anne Grethe Myhre; Otto Westphal; Nils Östen Nilsson; Maria Elfving; Ian Ellis; Britt-Marie Anderlid; Ingegerd Fransson; Isabel Tapia-Páez; Magnus Nordenskjöld; Lars Hagenäs; Jan P. Dumanski

Abstract. Dyschondrosteosis (DCO; also called Léri-Weill syndrome) is a skeletal dysplasia characterised by disproportionate short stature because of mesomelic shortening of the limbs. Madelung deformity is a feature of DCO that is distinctive, variable in expressivity and frequently observed. Mutations of the SHOX (short stature homeobox-containing) gene have been previously described as causative in DCO. Isolated Madelung deformity (IMD) without the clinical characteristics of DCO has also been described in sporadic and a few familial cases but the genetic defect underlying IMD is unknown. In this study, we have examined 28 probands with DCO and seven probands with IMD for mutations in the SHOX gene by using polymorphic CA-repeat analysis, fluorescence in situ hybridisation (FISH), Southern blotting, direct sequencing and fibre-FISH analyses. This was combined with auxological examination of the probands and their family members. Evaluation of the auxological data showed a wide intra- and interfamilial phenotype variability in DCO. Out of 28 DCO probands, 22 (79%) were shown to have mutations in the SHOX gene. Sixteen unrelated DCO families had SHOX gene deletions. Four novel DCO-associated mutations were found in different families. In two additional DCO families, the previously described nonsense mutation (Arg195Stop) was detected. We conclude that mutations in the SHOX gene are the major factor in the pathogenesis of DCO. In a female proband with severe IMD and her unaffected sister, we detected an intrachromosomal duplication of the SHOX gene.


Journal of Medical Genetics | 2010

Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family

Jin Dai; Ok-Hwa Kim; Tae-Joon Cho; M. Schmidt-Rimpler; Hidefumi Tonoki; Kazuharu Takikawa; Nobuhiko Haga; Kota Miyoshi; Hiroshi Kitoh; Won Joon Yoo; In Ho Choi; Hae Ryong Song; Dong-Kyu Jin; H. T. Kim; Hotaka Kamasaki; P. Bianchi; Giedre Grigelioniene; Sheela Nampoothiri; M. Minagawa; S. I. Miyagawa; T. Fukao; Carlo Marcelis; M. C E Jansweijer; Raoul C. M. Hennekam; F. Bedeschi; A. Mustonen; Qing Jiang; Hirofumi Ohashi; Tatsuya Furuichi; Sheila Unger

Background Mutations in TRPV4, a gene that encodes a Ca2+ permeable non-selective cation channel, have recently been found in a spectrum of skeletal dysplasias that includes brachyolmia, spondylometaphyseal dysplasia, Kozlowski type (SMDK) and metatropic dysplasia (MD). Only a total of seven missense mutations were detected, however. The full spectrum of TRPV4 mutations and their phenotypes remained unclear. Objectives and methods To examine TRPV4 mutation spectrum and phenotype−genotype association, we searched for TRPV4 mutations by PCR-direct sequencing from genomic DNA in 22 MD and 20 SMDK probands. Results TRPV4 mutations were found in all but one MD subject. In total, 19 different heterozygous mutations were identified in 41 subjects; two were recurrent and 17 were novel. In MD, a recurrent P799L mutation was identified in nine subjects, as well as 10 novel mutations including F471del, the first deletion mutation of TRPV4. In SMDK, a recurrent R594H mutation was identified in 12 subjects and seven novel mutations. An association between the position of mutations and the disease phenotype was also observed. Thus, P799 in exon 15 is a hot codon for MD mutations, as four different amino acid substitutions have been observed at this codon; while R594 in exon 11 is a hotspot for SMDK mutations. Conclusion The TRPV4 mutation spectrum in MD and SMDK, which showed genotype−phenotype correlation and potential functional significance of mutations that are non-randomly distributed over the gene, was presented in this study. The results would help diagnostic laboratories establish efficient screening strategies for genetic diagnosis of the TRPV4 dysplasia family diseases.


American Journal of Human Genetics | 2013

FAM111A mutations result in hypoparathyroidism and impaired skeletal development

Sheila Unger; Maria W. Górna; Antony Le Béchec; Sónia do Vale-Pereira; Maria Francesca Bedeschi; Stefan Geiberger; Giedre Grigelioniene; Eva Horemuzova; Faustina Lalatta; Ekkehart Lausch; Cinzia Magnani; Sheela Nampoothiri; Gen Nishimura; Duccio Petrella; Francisca Rojas-Ringeling; Akari Utsunomiya; Bernhard Zabel; Sylvain Pradervand; Keith Harshman; Belinda Campos-Xavier; Luisa Bonafé; Giulio Superti-Furga; Brian J. Stevenson; Andrea Superti-Furga

Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.


American Journal of Medical Genetics Part A | 2009

Clinical and molecular characterization of duplications encompassing the human SHOX gene reveal a variable effect on stature

N. Simon Thomas; John F. Harvey; David J. Bunyan; Julia Rankin; Giedre Grigelioniene; Damien L. Bruno; Tiong Yang Tan; Susan Tomkins; Robert Hastings

Deletions of the SHOX gene are well documented and cause disproportionate short stature and variable skeletal abnormalities. In contrast interstitial SHOX duplications limited to PAR1 appear to be very rare and the clinical significance of the only case report in the literature is unclear. Mapping of this duplication has now shown that it includes the entire SHOX gene but little flanking sequence and so will not encompass any of the long‐range enhancers required for SHOX transcription. We now describe the clinical and molecular characterization of three additional cases. The duplications all included the SHOX coding sequence but varied in the amount of flanking sequence involved. The probands were ascertained for a variety of reasons: hypotonia and features of Asperger syndrome, Leri–Weill dyschondrosteosis (LWD), and a family history of cleft palate. However, the presence of a duplication did not correlate with any of these features or with evidence of skeletal abnormality. Remarkably, the proband with LWD had inherited both a SHOX deletion and a duplication. The effect of the duplications on stature was variable: height appeared to be elevated in some carriers, particularly in those with the largest duplications, but was still within the normal range. SHOX duplications are likely to be under ascertained and more cases need to be identified and characterized in detail in order to accurately determine their phenotypic consequences.


American Journal of Human Genetics | 2014

Neu-laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway

Rocio Acuna-Hidalgo; Denny Schanze; Ariana Kariminejad; Ann Nordgren; Mohamad Hasan Kariminejad; Peter Conner; Giedre Grigelioniene; Daniel Nilsson; Magnus Nordenskjöld; Anna Wedell; Christoph Freyer; Anna Wredenberg; Dagmar Wieczorek; Gabriele Gillessen-Kaesbach; Hülya Kayserili; Nursel Elcioglu; Siavash Ghaderi-Sohi; Payman Goodarzi; Hamidreza Setayesh; Maartje van de Vorst; Marloes Steehouwer; Rolph Pfundt; Birgit Krabichler; Cynthia J. Curry; Malcolm MacKenzie; Kym M. Boycott; Christian Gilissen; Andreas R. Janecke; Alexander Hoischen; Martin Zenker

Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by a recognizable pattern of severe malformations leading to prenatal or early postnatal lethality. Homozygous mutations in PHGDH, a gene involved in the first and limiting step in L-serine biosynthesis, were recently identified as the cause of the disease in three families. By studying a cohort of 12 unrelated families affected by NLS, we provide evidence that NLS is genetically heterogeneous and can be caused by mutations in all three genes encoding enzymes of the L-serine biosynthesis pathway. Consistent with recently reported findings, we could identify PHGDH missense mutations in three unrelated families of our cohort. Furthermore, we mapped an overlapping homozygous chromosome 9 region containing PSAT1 in four consanguineous families. This gene encodes phosphoserine aminotransferase, the enzyme for the second step in L-serine biosynthesis. We identified six families with three different missense and frameshift PSAT1 mutations fully segregating with the disease. In another family, we discovered a homozygous frameshift mutation in PSPH, the gene encoding phosphoserine phosphatase, which catalyzes the last step of L-serine biosynthesis. Interestingly, all three identified genes have been previously implicated in serine-deficiency disorders, characterized by variable neurological manifestations. Our findings expand our understanding of NLS as a disorder of the L-serine biosynthesis pathway and suggest that NLS represents the severe end of serine-deficiency disorders, demonstrating that certain complex syndromes characterized by early lethality could indeed be the extreme end of the phenotypic spectrum of already known disorders.


European Journal of Human Genetics | 2015

Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta

Katarina Lindahl; Eva Åström; Carl-Johan Rubin; Giedre Grigelioniene; Barbro Malmgren; Östen Ljunggren; Andreas Kindmark

Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype–phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P<0.0001 vs 0.0049), while only those in the α1-chain were associated with blue sclera (P=0.0110). Comparing glycine with serine substitutions, α1-alterations were associated with more severe phenotype (P=0.0031). Individuals with type I OI caused by qualitative vs quantitative mutations were shorter (P<0.0001), but did not differ considering fractures or BMD. The children in this cohort were estimated to represent >95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population.


Human Genetics | 2000

Mutations in short stature homeobox containing gene ( SHOX ) in dyschondrosteosis but not in hypochondroplasia

Giedre Grigelioniene; Ole Eklöf; Sten Ivarsson; Otto Westphal; Lo Neumeyer; Darek Kedra; Jan P. Dumanski; Lars Hagenäs

Abstract. Dyschondrosteosis (DCO) and hypochondroplasia (HCH) are common skeletal dysplasias characterized by disproportionate short stature. The diagnosis of these conditions might be difficult to establish especially in early childhood. Point mutations and deletions of the short stature homeobox containing gene (SHOX) are detected in DCO and idiopathic short stature with some rhizomelic body disproportion, whereas mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are found in 40–70% of HCH cases. In this study, we performed mutational analysis of the coding region of the SHOX gene in five DCO and 18 HCH patients, all of whom tested negative for the known HCH-associated FGFR3 mutations. The polymorphic CA-repeat analysis, direct sequencing and Southern blotting were used for detection of deletions and point mutations. The auxological and radiological phenotype of these patients was carefully determined. Three novel mutations in DCO patients were found: (1) a deletion of one base (del272G) (according to GenBank accession nos. Y11536, Y11535), resulting in a premature stop codon at position 75 of the amino acid sequence; (2) the transversion C485G resulting in the substitution Leu132Val; and (3) the transversion G549T causing an Arg153Leu substitution. These substitutions segregate with the DCO phenotype and affect evolutionarily conserved homeodomain residues, based on a comparison of homeobox containing proteins in 13 species. Moreover, these changes were not found in 80 unrelated, unaffected individuals. This strongly suggests that these mutations are pathogenic. The phenotype of our patients with DCO and HCH varied from mild to severe shortness and body disproportion. These results further support clinical and genetic heterogeneity of dyschondrosteosis and hypochondroplasia.


Human Mutation | 1998

A novel missense mutation Ile538Val in the fibroblast growth factor receptor 3 in hypochondroplasia

Giedre Grigelioniene; Lars Hagenäs; Ole Eklöf; Lo Neumeyer; Pe Haereid; M Anvret

Hypochondroplasia and achondroplasia are skeletal dysplasias, characterised by autosomal dominant inheritance and disproportionate short stature, which occurs mainly due to growth failure of the extremities. Both dysplasias have been mapped to fibroblast growth factor receptor 3 (FGFR3) gene. For hypochondroplasia, two point mutations, both responsible for the Asn540Lys substitution in the region coding the tyrosine kinase domain have been reported.

Collaboration


Dive into the Giedre Grigelioniene's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Outi Mäkitie

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Hammarsjö

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Eva Horemuzova

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Stefan Geiberger

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anna Lindstrand

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Tham

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Eva Åström

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge