Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giedrius Gasiunas is active.

Publication


Featured researches published by Giedrius Gasiunas.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria

Giedrius Gasiunas; Rodolphe Barrangou; Philippe Horvath; Virginijus Siksnys

Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity against viruses and plasmids in bacteria and archaea. The silencing of invading nucleic acids is executed by ribonucleoprotein complexes preloaded with small, interfering CRISPR RNAs (crRNAs) that act as guides for targeting and degradation of foreign nucleic acid. Here, we demonstrate that the Cas9–crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system introduces in vitro a double-strand break at a specific site in DNA containing a sequence complementary to crRNA. DNA cleavage is executed by Cas9, which uses two distinct active sites, RuvC and HNH, to generate site-specific nicks on opposite DNA strands. Results demonstrate that the Cas9–crRNA complex functions as an RNA-guided endonuclease with RNA-directed target sequence recognition and protein-mediated DNA cleavage. These findings pave the way for engineering of universal programmable RNA-guided DNA endonucleases.


Nucleic Acids Research | 2011

The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli

Rimantas Sapranauskas; Giedrius Gasiunas; Christophe Fremaux; Rodolphe Barrangou; Philippe Horvath; Virginijus Siksnys

The CRISPR/Cas adaptive immune system provides resistance against phages and plasmids in Archaea and Bacteria. CRISPR loci integrate short DNA sequences from invading genetic elements that provide small RNA-mediated interference in subsequent exposure to matching nucleic acids. In Streptococcus thermophilus, it was previously shown that the CRISPR1/Cas system can provide adaptive immunity against phages and plasmids by integrating novel spacers following exposure to these foreign genetic elements that subsequently direct the specific cleavage of invasive homologous DNA sequences. Here, we show that the S. thermophilus CRISPR3/Cas system can be transferred into Escherichia coli and provide heterologous protection against plasmid transformation and phage infection. We show that interference is sequence-specific, and that mutations in the vicinity or within the proto-spacer adjacent motif (PAM) allow plasmids to escape CRISPR-encoded immunity. We also establish that cas9 is the sole cas gene necessary for CRISPR-encoded interference. Furthermore, mutation analysis revealed that interference relies on the Cas9 McrA/HNH- and RuvC/RNaseH-motifs. Altogether, our results show that active CRISPR/Cas systems can be transferred across distant genera and provide heterologous interference against invasive nucleic acids. This can be leveraged to develop strains more robust against phage attack, and safer organisms less likely to uptake and disseminate plasmid-encoded undesirable genetic elements.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes

Mark D. Szczelkun; Maria S. Tikhomirova; Tomas Sinkunas; Giedrius Gasiunas; Tautvydas Karvelis; Patrizia Pschera; Virginijus Siksnys; Ralf Seidel

Significance Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide adaptive immunity for bacteria and archaea. They use a protein complex that targets invading nucleic acids using a bound RNA that hybridizes to complementary sequence stretches. On DNA targets, the resulting structure is an R-loop. By twisting single DNA molecules, we can directly observe R-loop formation and dissociation in two distinct types of CRISPR-Cas system. This allows us to investigate the role of different elements of the target sequence. Whereas upstream elements control the actual R-loop formation, downstream elements ensure R-loop stability, suggesting a directional R-loop formation. This provides insight into the recognition process by these enzymes, which is the crucial step to understand targeting in the rapidly emerging genetic engineering applications of CRISPR-Cas systems. Clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems protect bacteria and archaea from infection by viruses and plasmids. Central to this defense is a ribonucleoprotein complex that produces RNA-guided cleavage of foreign nucleic acids. In DNA-targeting CRISPR-Cas systems, the RNA component of the complex encodes target recognition by forming a site-specific hybrid (R-loop) with its complement (protospacer) on an invading DNA while displacing the noncomplementary strand. Subsequently, the R-loop structure triggers DNA degradation. Although these reactions have been reconstituted, the exact mechanism of R-loop formation has not been fully resolved. Here, we use single-molecule DNA supercoiling to directly observe and quantify the dynamics of torque-dependent R-loop formation and dissociation for both Cascade- and Cas9-based CRISPR-Cas systems. We find that the protospacer adjacent motif (PAM) affects primarily the R-loop association rates, whereas protospacer elements distal to the PAM affect primarily R-loop stability. Furthermore, Cascade has higher torque stability than Cas9 by using a conformational locking step. Our data provide direct evidence for directional R-loop formation, starting from PAM recognition and expanding toward the distal protospacer end. Moreover, we introduce DNA supercoiling as a quantitative tool to explore the sequence requirements and promiscuities of orthogonal CRISPR-Cas systems in rapidly emerging gene-targeting applications.


The EMBO Journal | 2013

In vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus

Tomas Sinkunas; Giedrius Gasiunas; Sakharam Waghmare; Mark J. Dickman; Rodolphe Barrangou; Philippe Horvath; Virginijus Siksnys

Clustered regularly interspaced short palindromic repeats (CRISPR)‐encoded immunity in Type I systems relies on the Cascade (CRISPR‐associated complex for antiviral defence) ribonucleoprotein complex, which triggers foreign DNA degradation by an accessory Cas3 protein. To establish the mechanism for adaptive immunity provided by the Streptococcus thermophilus CRISPR4‐Cas (CRISPR‐associated) system (St‐CRISPR4‐Cas), we isolated an effector complex (St‐Cascade) containing 61‐nucleotide CRISPR RNA (crRNA). We show that St‐Cascade, guided by crRNA, binds in vitro to a matching proto‐spacer if a proto‐spacer adjacent motif (PAM) is present. Surprisingly, the PAM sequence determined from binding analysis is promiscuous and limited to a single nucleotide (A or T) immediately upstream (−1 position) of the proto‐spacer. In the presence of a correct PAM, St‐Cascade binding to the target DNA generates an R‐loop that serves as a landing site for the Cas3 ATPase/nuclease. We show that Cas3 binding to the displaced strand in the R‐loop triggers DNA cleavage, and if ATP is present, Cas3 further degrades DNA in a unidirectional manner. These findings establish a molecular basis for CRISPR immunity in St‐CRISPR4‐Cas and other Type I systems.


RNA Biology | 2013

crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus

Tautvydas Karvelis; Giedrius Gasiunas; Algirdas Miksys; Rodolphe Barrangou; Philippe Horvath; Virginijus Siksnys

The Cas9-crRNA complex of the Streptococcus thermophilus DGCC7710 CRISPR3-Cas system functions as an RNA-guided endonuclease with crRNA-directed target sequence recognition and protein-mediated DNA cleavage. We show here that an additional RNA molecule, tracrRNA (trans-activating CRISPR RNA), co-purifies with the Cas9 protein isolated from the heterologous E. coli strain carrying the S. thermophilus DGCC7710 CRISPR3-Cas system. We provide experimental evidence that tracrRNA is required for Cas9-mediated DNA interference both in vitro and in vivo. We show that Cas9 specifically promotes duplex formation between the precursor crRNA (pre-crRNA) transcript and tracrRNA, in vitro. Furthermore, the housekeeping RNase III contributes to primary pre-crRNA-tracrRNA duplex cleavage for mature crRNA biogenesis. RNase III, however, is not required in the processing of a short pre-crRNA transcribed from a minimal CRISPR array containing a single spacer. Finally, we show that an in vitro-assembled ternary Cas9-crRNA-tracrRNA complex cleaves DNA. This study further specifies the molecular basis for crRNA-based re-programming of Cas9 to specifically cleave any target DNA sequence for precise genome surgery. The processes for crRNA maturation and effector complex assembly established here will contribute to the further development of the Cas9 re-programmable system for genome editing applications.


Cellular and Molecular Life Sciences | 2014

Molecular mechanisms of CRISPR-mediated microbial immunity.

Giedrius Gasiunas; Tomas Sinkunas; Virginijus Siksnys

Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.


Genome Biology | 2015

Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements

Tautvydas Karvelis; Giedrius Gasiunas; Joshua Young; Greta Bigelyte; Arunas Silanskas; Mark Cigan; Virginijus Siksnys

To expand the repertoire of Cas9s available for genome targeting, we present a new in vitro method for the simultaneous examination of guide RNA and protospacer adjacent motif (PAM) requirements. The method relies on the in vitro cleavage of plasmid libraries containing a randomized PAM as a function of Cas9-guide RNA complex concentration. Using this method, we accurately reproduce the canonical PAM preferences for Streptococcus pyogenes, Streptococcus thermophilus CRISPR3 (Sth3), and CRISPR1 (Sth1). Additionally, PAM and sgRNA solutions for a novel Cas9 protein from Brevibacillus laterosporus are provided by the assay and are demonstrated to support functional activity in vitro and in plants.


Molecular Therapy | 2016

Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome.

Maximilian Müller; Ciaran M Lee; Giedrius Gasiunas; Timothy H. Davis; Thomas J. Cradick; Virginijus Siksnys; Gang Bao; Toni Cathomen; Claudio Mussolino

RNA-guided nucleases (RGNs) based on the type II CRISPR-Cas9 system of Streptococcus pyogenes (Sp) have been widely used for genome editing in experimental models. However, the nontrivial level of off-target activity reported in several human cells may hamper clinical translation. RGN specificity depends on both the guide RNA (gRNA) and the protospacer adjacent motif (PAM) recognized by the Cas9 protein. We hypothesized that more stringent PAM requirements reduce the occurrence of off-target mutagenesis. To test this postulation, we generated RGNs based on two Streptococcus thermophilus (St) Cas9 proteins, which recognize longer PAMs, and performed a side-by-side comparison of the three RGN systems targeted to matching sites in two endogenous human loci, PRKDC and CARD11. Our results demonstrate that in samples with comparable on-target cleavage activities, significantly lower off-target mutagenesis was detected using St-based RGNs as compared to the standard Sp-RGNs. Moreover, similarly to SpCas9, the StCas9 proteins accepted truncated gRNAs, suggesting that the specificities of St-based RGNs can be further improved. In conclusion, our results show that Cas9 proteins with longer or more restrictive PAM requirements provide a safe alternative to SpCas9-based RGNs and hence a valuable option for future human gene therapy applications.


Trends in Microbiology | 2013

RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

Giedrius Gasiunas; Virginijus Siksnys

Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects.


Journal of Biological Chemistry | 2005

Mva1269I: A Monomeric Type IIS Restriction Endonuclease from Micrococcus Varians with Two EcoRI- and FokI-like Catalytic Domains

Elena Armalyte; Janusz M. Bujnicki; Jolanta Giedriene; Giedrius Gasiunas; Jan Kosinski; Arvydas Lubys

Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5′-GAATGCN↓-3′/5′-NG↓CATTC-3′ and cuts top and bottom DNA strands at positions, indicated by the “↓” symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two “PD-(D/E)XK” domains. The N-terminal domain is related to the 5′-GAATTC-3′-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.

Collaboration


Dive into the Giedrius Gasiunas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvydas Lubys

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar

Rodolphe Barrangou

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Smith

Thermo Fisher Scientific

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge