Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gigi N.C. Chiu is active.

Publication


Featured researches published by Gigi N.C. Chiu.


Journal of Pharmaceutical Sciences | 2010

The functional roles of poly(ethylene glycol)-lipid and lysolipid in the drug retention and release from lysolipid-containing thermosensitive liposomes in vitro and in vivo.

Brian Banno; Ludger M. Ickenstein; Gigi N.C. Chiu; Marcel B. Bally; Jenifer Thewalt; Elana Brief; Ellen K. Wasan

Triggered release of liposomal contents following tumor accumulation and mild local heating is pursued as a means of improving the therapeutic index of chemotherapeutic drugs. Lysolipid-containing thermosensitive liposomes (LTSLs) are composed of dipalmitoylphosphatidylcholine (DPPC), the lysolipid monostearoylphosphatidylcholine (MSPC), and poly(ethylene glycol)-conjugated distearoylphosphatidylethanolamine (DSPE-PEG(2000)). We investigated the roles of DSPE-PEG(2000) and lysolipid in the functional performance of the LTSL-doxorubicin formulation. Varying PEG-lipid concentration (0-5 mol%) or bilayer orientation did not affect the release; however, lysolipid (0-10 mol%) had a concentration-dependent effect on drug release at 42 degrees C in vitro. Pharmacokinetics of various LTSL formulations were compared in mice with body temperature controlled at 37 degrees C. As expected, incorporation of the PEG-lipid increased doxorubicin plasma half-life; however, PEG-lipid orientation (bilayer vs. external leaflet) did not significantly improve circulation lifetime or drug retention in LTSL. Approximately 70% of lysolipid was lost within 1 h postinjection of LTSL, which could be due to interactions with the large membrane pool of the biological milieu. Considering that the present LTSL-doxorubicin formulation exhibits significant therapeutic activity when used in conjunction with mild heating, our current study provided critical insights into how the physicochemical properties of LTSL can be tailored to achieve better therapeutic activity.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model

Man-Yi Wong; Gigi N.C. Chiu

UNLABELLED Hormone- and trastuzumab-insensitive breast cancer has limited and ineffective clinical treatment options. This study sought to develop a liposome formulation containing a synergistic combination of vincristine and quercetin, with prolonged drug circulation times and coordinated drug release in vivo, to develop effective treatments against this subtype of breast cancer. The 2:1 molar ratio of vincristine/quercetin showed strong synergism in the hormone- and trastuzumab-insensitive JIMT-1 cells. Liposome co-encapsulation prolonged plasma circulation of the two drugs and maintained the synergistic drug ratio in vivo. Furthermore, the co-encapsulated liposome formulation demonstrated the most effective tumor growth inhibition in the JIMT-1 human breast tumor xenograft in comparison with vehicle control, free quercetin, free vincristine and free vincristine/quercetin combinations. Specifically, only the co-encapsulated liposome formulation exhibited significant antitumor activity at two-thirds of the maximum tolerated dose of vincristine, without significant body weight loss in the animals. FROM THE CLINICAL EDITOR In this study, a novel liposome formulation containing a synergistic combination of vincristine and quercetin was utilized in the treatment of breast cancer. Prolonged drug circulation times and coordinated drug release characterize this effective treatment, which may find its way to clinical applications in the near future.


Molecular Cancer Therapeutics | 2008

Suppression of VEGF secretion and changes in glioblastoma multiforme microenvironment by inhibition of Integrin-linked kinase (ILK)

Lincoln Edwards; Janet Woo; Lynsey A. Huxham; Maite Verreault; Wieslawa H. Dragowska; Gigi N.C. Chiu; Ashish Rajput; Alastair H. Kyle; Jessica Kalra; Donald Yapp; Hong Yan; Andrew I. Minchinton; David Huntsman; Tim Daynard; Dawn Waterhouse; Brian Thiessen; Shoukat Dedhar; Marcel B. Bally

Integrin-linked kinase (ILK) was assesed as a therapeutic target in glioblastoma xenograft models through multiple endpoints including treatment related changes in the tumor microenvironment. Glioblastoma cell lines were tested in vitro for sensitivity toward the small-molecule inhibitors QLT0254 and QLT0267. Cell viability, cell cycle, and apoptosis were evaluated using MTT assay, flow cytometry, caspase activation, and DAPI staining. Western blotting and ELISA were used for protein analysis (ILK, PKB/Akt, VEGF, and HIF-1α). In vivo assessment of growth rate, cell proliferation, BrdUrd, blood vessel mass (CD31 labeling), vessel perfusion (Hoechst 33342), and hypoxia (EF-5) was done using U87MG glioblastoma xenografts in RAG2-M mice treated orally with QLT0267 (200 mg/kg q.d.). ILK inhibition in vitro with QLT0254 and QLT0267 resulted in decreased levels of phospho-PKB/Akt (Ser473), secreted VEGF, G2-M block, and apoptosis induction. Mice treated with QLT0267 exhibited significant delays in tumor growth (treated 213 mm3 versus control 549 mm3). In situ analysis of U87MG tumor cell proliferation from QLT0267-treated mice was significantly lower relative to untreated mice. Importantly, VEGF and HIF-1α expression decreased in QLT0267-treated tumors as did the percentage of blood vessel mass and numbers of Hoechst 33342 perfused tumor vessels compared with control tumors (35% versus 83%). ILK inhibition with novel small-molecule inhibitors leads to treatment-associated delays in tumor growth, decreased tumor angiogenesis, and functionality of tumor vasculature. The therapeutic effects of a selected ILK inhibitor (QLT0267) should be determined in the clinic in cancers that exhibit dysregulated ILK, such as PTEN-null glioblastomas. [Mol Cancer Ther 2008;7(1):59–70]


International Journal of Nanomedicine | 2012

Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer

Bee Jen Tan; Yuanjie Liu; Kai-Lun Chang; Bennie Kw Lim; Gigi N.C. Chiu

Background Realizing the therapeutic benefits of quercetin is mostly hampered by its low water solubility and poor absorption. In light of the advantages of nanovehicles in the delivery of flavanoids, we aimed to deliver quercetin perorally with nanomicelles made from the diblock copolymer, polyethylene glycol (PEG)-derivatized phosphatidylethanolamine (PE). Methods Quercetin-loaded nanomicelles were prepared by using the film casting method, and were evaluated in terms of drug incorporation efficiency, micelle size, interaction with Caco-2 cells, and anticancer activity in the A549 lung cancer cell line and murine xenograft model. Results The incorporation efficiency into the nanomicelles was ≥88.9% when the content of quercetin was up to 4% w/w, with sizes of 15.4–18.5 nm and polydispersity indices of <0.250. Solubilization of quercetin by the nanomicelles increased its aqueous concentration by 110-fold. The quercetin nanomicelles were stable when tested in simulated gastric (pH 1.2) and intestinal (pH 7.4) fluids, and were non-toxic to the Caco-2 cells as reflected by reversible reduction in transepithelial electrical resistance and ≤25% lactose dehydrogenase release. The anticancer activity of quercetin could be significantly improved over the free drug through the nanomicellar formulation when tested using the A549 cancer cell line and murine xenograft model. The nanomicellar quercetin formulation was well tolerated by the tumor-bearing animals, with no significant weight loss observed at the end of the 10-week study period. Conclusion A stable PEG-PE nanomicellar formulation of quercetin was developed with enhanced peroral anticancer activity and no apparent toxicity to the intestinal epithelium.


Current Drug Metabolism | 2009

Lipid-Based Nanoparticulate Systems for the Delivery of Anti-Cancer Drug Cocktails: Implications on Pharmacokinetics and Drug Toxicities

Gigi N.C. Chiu; Man-Yi Wong; Leong-Uung Ling; Ishaque M. Shaikh; Kuan-Boone Tan; Anumita Chaudhury; Bee Jen Tan

The use of drug cocktails has become a widely adopted strategy in clinical cancer therapy. Cytotoxic drug cocktails are often administered based on maximum tolerated dose (MTD) of each agent, with the belief of achieving maximum cell kill through tolerable toxicity level. Yet, MTD administration may not have fully captured the therapeutic synergism that exists among the individual agents in the drug cocktail, as the response to a cocktail regimen, that is, whether the effect is synergistic or not, could be highly sensitive to the concentration ratios of the individual drugs at the site of action. It is important to realize that the inherently different pharmacokinetic profiles of the individual agents could have significant influence on the response to an anti-cancer drug cocktail by dictating the amount of the individual agents reaching the tumor site and therefore the concentration ratios. Furthermore, the individual agents may have unfavorable pharmacokinetic interactions that add to the difficulty in determining the therapeutic and/or toxicological effects of the drug cocktail. In this review, we will focus on how lipid-based nanoparticulate systems could address the above issues associated with anti-cancer drug cocktails. Specifically, we will highlight the use of liposome systems as the means to control and coordinate the delivery of various anti-cancer drug cocktails, encompassing conventional chemotherapeutics, chemosensitizing agents and molecularly targeted agents.


International Journal of Nanomedicine | 2011

Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery

Jurja Chua Coyuco; Yuanjie Liu; Bee Jen Tan; Gigi N.C. Chiu

Although carbon nanomaterials (CNMs) have been increasingly studied for their biomedical applications, there is limited research on these novel materials for oral drug delivery. As such, this study aimed to explore the potential of CNMs in oral drug delivery, and the objectives were to evaluate CNM cytotoxicity and their abilities to modulate paracellular transport and the P-glycoprotein (P-gp) efflux pump. Three types of functionalized CNMs were studied, including polyhydroxy small-gap fullerenes (OH-fullerenes), carboxylic acid functionalized single-walled carbon nanotubes (f SWCNT-COOH) and poly(ethylene glycol) functionalized single-walled carbon nanotubes (f SWCNT-PEG), using the well-established Caco-2 cell monolayer to represent the intestinal epithelium. All three CNMs had minimum cytotoxicity on Caco-2 cells, as demonstrated through lactose dehydrogenase release and 3-(4,5-dimethyliazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Of the three CNMs, f SWCNT-COOH significantly reduced transepithelial electrical resistance and enhanced transport of Lucifer Yellow across the Caco-2 monolayer. Confocal fluorescence microscopy showed that f SWCNT-COOH treated cells had the highest perturbation in the distribution of ZO-1, a protein marker of tight junction, suggesting that f SWCNT-COOH could enhance paracellular permeability via disruption of tight junctions. This modulating effect of f SWCNT-COOH can be reversed over time. Furthermore, cellular accumulation of the P-gp substrate, rhodamine-123, was significantly increased in cells treated with f SWCNT-COOH, suggestive of P-gp inhibition. Of note, f SWCNT-PEG could increase rhodamine-123 accumulation without modifying the tight junction. Collectively, these results suggest that the functionalized CNMs could be useful as modulators for oral drug delivery, and the differential effects on the intestinal epithelium imparted by different types of CNMs would create unique opportunities for drug-specific oral delivery applications.


Journal of Controlled Release | 2013

Liposome co-encapsulation of synergistic combination of irinotecan and doxorubicin for the treatment of intraperitoneally grown ovarian tumor xenograft.

Ishaque M. Shaikh; Kuan-Boone Tan; Anumita Chaudhury; Yuanjie Liu; Bee Jen Tan; Bernice M.J. Tan; Gigi N.C. Chiu

Liposome co-encapsulation of synergistic anti-cancer drug combination is an emerging area that has demonstrated therapeutic benefit in clinical trials. Remote loading of two or more drugs into a single liposome constitutes a new challenge that calls for a re-examination of drug loading strategies to allow the loading of the drug combination efficiently and with high drug content. In this study, the Mn2+ gradient coupled with A23187 ionophore was applied in the sequential co-encapsulation of doxorubicin and irinotecan, as this drug loading method is capable of remotely loading drugs by apparently two different mechanisms, namely, coordination complexation and pH gradient. Doxorubicin and irinotecan could be co-encapsulated into liposomes in a wide range of drug-to-drug ratio, with encapsulation efficiencies of >80%. The total encapsulated drug content was non-linearly correlated with increases in the intraliposomal Mn2+ concentration, with a maximum total drug-to-lipid molar ratio of 0.8:1 achieved with 600mM Mn2+. This high encapsulated drug content did not affect the stability of the co-encapsulated liposomes upon storage for six months. Regardless of the encapsulated drug amount, the liposomes did not exhibit the fiber bundle precipitate morphology but rather an undefined structural organization in the aqueous core. The co-encapsulated liposome formulation was further tested in an intraperitoneally grown, human ovarian tumor xenograft model, and was shown to significantly improve the survival of the tumor-bearing animals. The improvement in therapeutic efficacy was possibly due to the increase in systemic drug exposure, with the maintenance of the synergistic molar drug ratio of 1:1 in circulation.


International Journal of Nanomedicine | 2012

Potent therapeutic activity of folate receptor-targeted liposomal carboplatin in the localized treatment of intraperitoneally grown human ovarian tumor xenograft.

Anumita Chaudhury; Surajit Das; Ralph M. Bunte; Gigi N.C. Chiu

Intraperitoneal (IP) therapy with platinum (Pt)-based drugs has shown promising results clinically; however, high locoregional concentration of the drug could lead to adverse side effects. In this study, IP administration was coupled with a folate receptor-targeted (FRT) liposomal system, in an attempt to achieve intracellular delivery of the Pt-based drug carboplatin in order to increase therapeutic efficacy and to minimize toxicity. In vitro and in vivo activity of FRT carboplatin liposomes was compared with the activity of free drug and nontargeted (NT) carboplatin liposomes using FR-overexpressing IGROV-1 ovarian cancer cells as the model. Significant reduction in cell viability was observed with FRT liposomes, which, compared with the free drug, provided an approximately twofold increase in carboplatin potency. The increase in drug potency was correlated with significantly higher cellular accumulation of Pt resulting from FRT liposomal delivery. Further evaluation was conducted in mice bearing intraperitoneally inoculated IGROV-1 ovarian tumor xenografts. A superior survival rate (five out of six animals) was achieved in animals treated with FRT carboplatin liposomes, injected intraperitoneally with a dose of 15 mg/kg and following a schedule of twice-weekly administration for 3 weeks. In contrast, no survivors were observed in the free drug or NT carboplatin liposome groups. The presence of cancer cells in lung and liver tissues was observed in the saline, free carboplatin, and NT carboplatin liposome groups. However, there was no sign of cancer cells or drug-related toxicity detected in tissues from the animals treated with FRT carboplatin liposomes. The results of this study have demonstrated for the first time that the approach of coupling IP administration with FRT liposomal delivery could provide significantly improved therapeutic efficacy of carboplatin in the treatment of metastatic ovarian cancer.


International Journal of Oncology | 2013

Role of oxidative stress, endoplasmic reticulum stress and ERK activation in triptolide-induced apoptosis

Bee Jen Tan; Gigi N.C. Chiu

Since its isolation from Tripterygium wilfordii in 1972, triptolide has been shown to possess potent anticancer activity against a variety of cancers, and has entered phase I clinical trial. It is a diterpenoid triepoxide that acts through multiple molecular targets and signaling pathways. The mitogen-activated protein kinases are well known for their modulation of cell survival and proliferation. In particular, the ERK pathway has a dual role in cell proliferation and cell death. Thus far, data on the effect of triptolide on ERK signaling remain limited. In our current study, we have shown for the first time that ERK activation rather than inhibition occurred in a dose- and time-dependent manner following triptolide treatment in MDA-MB-231 breast cancer cells. ERK activation was crucial in mediating triptolide-induced caspase-dependent apoptosis. Tritpolide-induced ERK activation modulated the expression of the Bcl-2 protein family member Bax but was not involved in the downregulation of Bcl-xL expression. Signals acted upstream of ERK activation included generation of reactive oxygen species (ROS) and endoplasmic reticulum stress predominantly via the PERK‑eIF2α pathway, as the MEK inhibitor U0126 did not inhibit the phosphorylation of PERK and eIF2α or the generation of ROS.


International Journal of Pharmaceutics | 2012

Lyophilization of cholesterol-free PEGylated liposomes and its impact on drug loading by passive equilibration

Anumita Chaudhury; Surajit Das; Ronald F.S. Lee; Kuan-Boone Tan; W.K. Ng; Reginald B. H. Tan; Gigi N.C. Chiu

The obstacles in translating liposome formulations into marketable products could be attributed to their physical instabilities upon long-term storage as aqueous dispersions. Lyophilization is the most commonly used technique to improve physical stability of liposomes. The development of stable, lyophilized liposomes is focused primarily on the cholesterol-containing liposomes or pure phosphatidylcholine-based liposomes, with minimal studies on cholesterol-free, pegylated (CF-PEG) liposomes which have emerged as an important class of liposome drug carriers. Hence, it is our interest to investigate the effect of lyophilization on CF-PEG liposomes, and specifically, on drug loading via the passive equilibration method. Three different sugar cryoprotectants were used at two different sugar-to-lipid molar ratios (S/L). Our results demonstrated that CF-PEG liposomes lyophilized with sucrose at S/L=5:1 yielded the best cryoprotective effect, as characterized by size, polydispersity indices, and microscopic examination upon liposome reconstitution. The lyophilized liposomes had low water content of 2.59 ± 0.18%. Of note, lyophilized CF-PEG liposomes exhibited two-fold increase in drug content when carboplatin was loaded via the passive equilibration method, and the in vitro drug release profile of these liposomes were not different from that of the non-lyophilized counterparts. Taken together, we envisioned that a stable, lyophilized empty CF-PEG liposome system could be coupled to hydrophilic drug loading via the passive equilibration method to produce a liposomal drug kit product.

Collaboration


Dive into the Gigi N.C. Chiu's collaboration.

Top Co-Authors

Avatar

Bee Jen Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Kuan-Boone Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Marcel B. Bally

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Man-Yi Wong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yuanjie Liu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Anumita Chaudhury

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Leong-Uung Ling

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Sudipto Bari

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

William Yk Hwang

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiubo Fan

Singapore General Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge