Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gil S. Jacinto is active.

Publication


Featured researches published by Gil S. Jacinto.


Marine Pollution Bulletin | 2008

Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines

Maria Lourdes San Diego-McGlone; Rhodora V. Azanza; Cesar L. Villanoy; Gil S. Jacinto

The coastal waters of Bolinao, Pangasinan, Philippines experienced environmental changes over a 10-year period (1995-2005), the most significant effect of which was the major fish kill event in 2002 that coincided with the first reported Philippine bloom of a dinoflagellate Prorocentrum minimum. Days before the bloom, dissolved oxygen was < 2.0 mg/l in the waters that were stratified. These conditions may be linked to the uncontrolled proliferation of fish pens and cages to more than double the allowable limit of 544 units for Bolinao waters. Mariculture activities release organic matter from unconsumed feed and fecal material that accumulate in the water and sediments. In over 10 years, water quality conditions have become eutrophic with ammonia increasing by 56%, nitrite by 35%, nitrate by 90%, and phosphate by 67%. The addition of more fish pens and cages placed additional stress to this poorly flushed, shallow area that affected water quality due to changes in the water residence time.


Science | 2018

Declining oxygen in the global ocean and coastal waters

Lisa A. Levin; Andreas Oschlies; Marilaure Grégoire; Francisco P. Chavez; Daniel J. Conley; Véronique Garçon; Denis Gilbert; Dimitri Gutiérrez; Kirsten Isensee; Gil S. Jacinto; Karin E. Limburg; Ivonne Montes; S. W. A. Naqvi; Grant C. Pitcher; Nancy N. Rabalais; Michael R. Roman; Kenneth A. Rose; Brad A. Seibel; M. Telszewski; Moriaki Yasuhara; Jing Zhang

Beneath the waves, oxygen disappears As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm. Science, this issue p. eaam7240 BACKGROUND Oxygen concentrations in both the open ocean and coastal waters have been declining since at least the middle of the 20th century. This oxygen loss, or deoxygenation, is one of the most important changes occurring in an ocean increasingly modified by human activities that have raised temperatures, CO2 levels, and nutrient inputs and have altered the abundances and distributions of marine species. Oxygen is fundamental to biological and biogeochemical processes in the ocean. Its decline can cause major changes in ocean productivity, biodiversity, and biogeochemical cycles. Analyses of direct measurements at sites around the world indicate that oxygen-minimum zones in the open ocean have expanded by several million square kilometers and that hundreds of coastal sites now have oxygen concentrations low enough to limit the distribution and abundance of animal populations and alter the cycling of important nutrients. ADVANCES In the open ocean, global warming, which is primarily caused by increased greenhouse gas emissions, is considered the primary cause of ongoing deoxygenation. Numerical models project further oxygen declines during the 21st century, even with ambitious emission reductions. Rising global temperatures decrease oxygen solubility in water, increase the rate of oxygen consumption via respiration, and are predicted to reduce the introduction of oxygen from the atmosphere and surface waters into the ocean interior by increasing stratification and weakening ocean overturning circulation. In estuaries and other coastal systems strongly influenced by their watershed, oxygen declines have been caused by increased loadings of nutrients (nitrogen and phosphorus) and organic matter, primarily from agriculture; sewage; and the combustion of fossil fuels. In many regions, further increases in nitrogen discharges to coastal waters are projected as human populations and agricultural production rise. Climate change exacerbates oxygen decline in coastal systems through similar mechanisms as those in the open ocean, as well as by increasing nutrient delivery from watersheds that will experience increased precipitation. Expansion of low-oxygen zones can increase production of N2O, a potent greenhouse gas; reduce eukaryote biodiversity; alter the structure of food webs; and negatively affect food security and livelihoods. Both acidification and increasing temperature are mechanistically linked with the process of deoxygenation and combine with low-oxygen conditions to affect biogeochemical, physiological, and ecological processes. However, an important paradox to consider in predicting large-scale effects of future deoxygenation is that high levels of productivity in nutrient-enriched coastal systems and upwelling areas associated with oxygen-minimum zones also support some of the world’s most prolific fisheries. OUTLOOK Major advances have been made toward understanding patterns, drivers, and consequences of ocean deoxygenation, but there is a need to improve predictions at large spatial and temporal scales important to ecosystem services provided by the ocean. Improved numerical models of oceanographic processes that control oxygen depletion and the large-scale influence of altered biogeochemical cycles are needed to better predict the magnitude and spatial patterns of deoxygenation in the open ocean, as well as feedbacks to climate. Developing and verifying the next generation of these models will require increased in situ observations and improved mechanistic understanding on a variety of scales. Models useful for managing nutrient loads can simulate oxygen loss in coastal waters with some skill, but their ability to project future oxygen loss is often hampered by insufficient data and climate model projections on drivers at appropriate temporal and spatial scales. Predicting deoxygenation-induced changes in ecosystem services and human welfare requires scaling effects that are measured on individual organisms to populations, food webs, and fisheries stocks; considering combined effects of deoxygenation and other ocean stressors; and placing an increased research emphasis on developing nations. Reducing the impacts of other stressors may provide some protection to species negatively affected by low-oxygen conditions. Ultimately, though, limiting deoxygenation and its negative effects will necessitate a substantial global decrease in greenhouse gas emissions, as well as reductions in nutrient discharges to coastal waters. Low and declining oxygen levels in the open ocean and coastal waters affect processes ranging from biogeochemistry to food security. The global map indicates coastal sites where anthropogenic nutrients have exacerbated or caused O2 declines to <2 mg liter−1 (<63 μmol liter−1) (red dots), as well as ocean oxygen-minimum zones at 300 m of depth (blue shaded regions). [Map created from data provided by R. Diaz, updated by members of the GO2NE network, and downloaded from the World Ocean Atlas 2009]. Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems.


Marine Pollution Bulletin | 1995

Heavy metal fluxes in Bang Pakong River Estuary, Thailand: Sedimentary vs diffusive fluxes

Voravit Cheevaporn; Gil S. Jacinto; M.L. San Diego-McGlone

Estimates of the flux of heavy metals into the sediments (sedimentary flux) of Bang Pakong River Estuary and the diffusive flux of these metals across the sediment-water interface provide quantitative approximations on the movement of heavy metals from the water column into the sediments, and vice versa. Results showed higher sedimentary flux of Cu, Pb, Zn, Cd, Cr and Ni (0.1–16.8 μg cm−2 yr−1) relative to the diffusive flux of these metals (0.01–4.8 μg cm−2 yr−1). The percentage diagenetic contribution (ratio of diffusive flux to sedimentary flux) of these metals ranged from 10–91%. This suggests that diagenetic remobilization and release of these metals from the sediments into the overlying water may contribute to the subsequent redeposition of these metals into the sediments. Metal enrichment at the surface sediments when compared with deeper sections of the sediment may not necessarily be interpreted as evidence of recent natural, anthropogenic inputs alone, but may also be a consequence of the deposition of metals previously released from the sediments through diagenesis.


Marine Pollution Bulletin | 2002

The speciation of dissolved copper, cadmium and zinc in Manila Bay, Philippines.

I.B Velasquez; Gil S. Jacinto; Florenda S. Valera

At present, there is a very limited information on the levels and distribution of dissolved metals in Manila Bay. In this study, the horizontal and vertical distribution of operationally defined species (labile, bound and total) of dissolved copper (Cu), cadmium (Cd) and zinc (Zn) were determined using differential pulse anodic and cathodic stripping voltammetry in water samples obtained from 18 stations in November 1998. In addition, the 24-h variability in the concentrations of these species at different depths in the water column was determined. These measurements were complemented by the determination of temperature, salinity, dissolved oxygen, chlorophyll a, particulate organic carbon and nutrients. Results showed that more than 50% of total dissolved copper and cadmium were labile while 50% of total dissolved zinc was organically bound. Vertical profiles showed that Cu, Cd and Zn concentrations were generally high at the surface. Zinc and cadmium were characterised by the presence of a mid-depth minimum while copper did not show any clear vertical trend. Dissolved Cu concentrations during the spatial and diurnal samplings ranged from 0.32 to 6.95 nM and 1.52 to 45.65 nM, respectively. For Cd, the concentrations in 18 stations ranged from 0.05 to 2.92 nM, and from 0.03 to 2.42 nM over a 24-h period. Zn concentrations ranged from 2.48 to 147.43 nM and 2.87 to 88.27 nM during the spatial and diurnal samplings, respectively. The large variation in the concentration of Cu, Cd and Zn in the bay was observed to be associated with the presence of a large vertical density gradient in the water column, which appeared to limit the exchange of materials between the surface and bottom waters. Elevated levels of these metals near point sources suggest anthropogenic inputs in the bay.


Marine Pollution Bulletin | 1994

Preliminary study of the redistribution and transformation of HgS from cinnabar mine tailings deposited in Honda Bay, Palawan, Philippines

Gaboury Benoit; Jon Schwantes; Gil S. Jacinto; Margaret R. Goud-Collins

Abstract Mining operations in Palawan, Philippines, resulted in cinnabar (HgS) mine tailings being used to build a 600 m long peninsula in Honda Bay. Samples collected from the peninsula as well as sediments from the surrounding waters had elevated mercury levels as high as 570 ppm. Natural processes are transporting mercury as much as 10 km from the peninsula, mainly in a coastwise direction, and preferentially associated with fine-grained, organic-rich sediments. Depth of penetration into sediments exceeds 10 cm near the source. As the HgS is transported away from the peninsula, it is rapidly altered to more bioavailable forms; 50% conversion occurs within a distance of only 10–40 m.


Marine Pollution Bulletin | 2011

Nutrient inputs from submarine groundwater discharge on the Santiago reef flat, Bolinao, Northwestern Philippines.

Maria Isabel S. Senal; Gil S. Jacinto; Maria Lourdes San Diego-McGlone; Fernando P. Siringan; Peter B. Zamora; Lea Soria; M. Bayani Cardenas; Cesar L. Villanoy; Olivia Cabrera

Submarine groundwater discharge (SGD) on the reef flat of Bolinao, Pangasinan (Philippines) was mapped using electrical resistivity, 222Rn, and nutrient concentration measurements. Nitrate levels as high as 126 μM, or 1-2 orders of magnitude higher than ambient concentrations, were measured in some areas of the reef flat. Nutrient fluxes were higher during the wet season (May-October) than the dry season (November-April). Dissolved inorganic nitrogen (DIN=NO3+NO2+NH4) and soluble reactive phosphorus (SRP) fluxes during the wet season were 4.4 and 0.2 mmoles m(-2) d(-1), respectively. With the increase population size and anthropogenic activities in Bolinao, an enhancement of SGD-derived nitrogen levels is likely. This could lead to eutrophic conditions in the otherwise oligotrophic waters surrounding the Santiago reef flat.


Archive | 2006

Manila Bay: Environmental Challenges and Opportunities

Gil S. Jacinto; Rhodora V. Azanza; I. B. Velasquez; Fernando P. Siringan

Manila Bay has a wide range of environmental problems that need to be addressed — from land-based and sea-based sources of pollution to harmful algal blooms, subsidence and groundwater extraction, overexploitation of fishery resources, and habitat conversion and degradation. However, there are reasons to be optimistic. There is greater accountability expected of public officials vis-a-vis environmental laws, significant and increasing infrastructure investments to treat and reduce domestic sewage discharges into the bay, the implementation of the Manila Bay Environmental Management Project, and the adoption the concept and practice of ICM by local government units and communities around Manila Bay.


Journal of Physical Oceanography | 1998

The coupling between harbor seiches at Palawan Island and Sulu Sea internal solitons

Graham S. Giese; David C. Chapman; Margaret Goud Collins; Rolu Encarnacion; Gil S. Jacinto

Abstract Between 1989 and 1991 the authors made observations that confirm and elucidate the coupling between harbor seiches at Puerto Princesa on Palawan Island in the Philippines and tide-generated internal solitons in the Sulu Sea. Published tidal current predictions for Basilan Strait in the Sulu Archipeligo were used to produce an index to the daily ebb tidal flows near Pearl Bank where the solitons originate. The coherence between predicted maximum ebb tidal current speed and observed seiche activity was 0.60 and the phase lag between the two quantities closely matched published estimates of the time required for solitons to cross the Sulu Sea. Arrival of the Sulu Sea waves immediately offshore of Puerto Princesa in the form of internal bores corresponded in time to the initiation of harbor seiche activity. A more precise estimate of soliton travel time was determined from the time difference between predicted maximum ebb current and the initiation of seiche activity, and it was found to have a remar...


Marine Pollution Bulletin | 2011

Hypoxia in Manila Bay, Philippines during the northeast monsoon

Gil S. Jacinto; Lara Patricia A. Sotto; Maria Isabel S. Senal; Maria Lourdes San Diego-McGlone; Ma Teresa L Escobar; Atsuko Amano; Todd W. Miller

Herein we present results from one of the first extensive bay-wide oceanographic surveys of Manila Bay, wherein 31 stations were sampled during the northeast monsoon (cold and dry season). A band of hypoxic bottom water (dissolved oxygen<2.8 mg/L) spanned the midsection of the bay from east to west. Bottom nitrate concentrations (5.7-16.8 μM; avg. 11.1 μM) and total organic carbon values in sediments (1.7-3.1%; avg. 2.4%) were high in the midsection, which coincided with the band of hypoxic bottom water. Physical processes and site-specific accumulation of organic material likely lead to hypoxic conditions in Manila Bay, even during the northeast monsoon period when the water column is relatively well mixed. The results of this study complement the previously reported widespread hypoxia that occurs during the rainy season. Thus, hypoxia may be pervasive in the bay throughout the year, although it varies in intensity and spatial extent.


Continental Shelf Research | 1991

Evidence of internal swash associated with Sulu Sea solitary waves

David C. Chapman; Graham S. Giese; Margaret Goud Collins; Rolu Encarnacion; Gil S. Jacinto

Abstract Vertical temperature profiles were measured near the shelf edge off the coast of Palawan Island (Philippines) during the passage of several “rip bands” of choppy surface waves. Such rip bands are commonly associated with internal waves. Coincident with the passage of one of the rip bands, the temperature near the bottom decreased by 2.5°C within 1.4 min, becoming colder than any water on the shelf. Furthermore, the apparent depth of our CTD decreased by about 8 m despite the fact that the “line-out” was held fixed. We interpret these limited data, along with a sea-level record, as evidence of internal swash created by breaking internal solitary waves which are generated by tidal flow over a shallow bank in the southeastern Sulu Sea (described by Apel et al., 1985 , Journal of Physical Oceanography, 15, 1625–1651).

Collaboration


Dive into the Gil S. Jacinto's collaboration.

Top Co-Authors

Avatar

Maria Lourdes San Diego-McGlone

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Cesar L. Villanoy

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Rhodora V. Azanza

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Maria Isabel S. Senal

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Olivia Cabrera

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Fernando P. Siringan

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Lara Patricia A. Sotto

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Charissa M. Ferrera

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Garry A. Benico

University of the Philippines Diliman

View shared research outputs
Top Co-Authors

Avatar

Gian Louis B Coronel

University of the Philippines Diliman

View shared research outputs
Researchain Logo
Decentralizing Knowledge