Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilbert R. Kinsey is active.

Publication


Featured researches published by Gilbert R. Kinsey.


Nephron Experimental Nephrology | 2008

Inflammation in Acute Kidney Injury

Gilbert R. Kinsey; Li Li; Mark D. Okusa

Ischemia-reperfusion injury (IRI) is one of the major causes of acute kidney injury (AKI) and evidence supporting the involvement of both innate and adaptive immunity in renal IRI has accumulated in recent years. In addition to leukocytes, kidney endothelial cells promote inflammation after IRI by increasing adhesion molecule expression and vascular permeability. Kidney tubular epithelial cells increase complement binding and upregulate toll-like receptors, both of which lead to cytokine/chemokine production in IRI. Activation of kidney resident dendritic cells, interferon-γ-producing neutrophils, infiltrating macrophages, CD4+ T cells, B cells and invariant natural killer T cells are all implicated in the pathogenesis of AKI. The complex interplay between innate and adaptive immunity in renal IRI is still not completely understood, but major advances have been made. This review summarizes these recent advances to further our understanding of the immune mechanisms of acute kidney injury.


Journal of The American Society of Nephrology | 2009

Regulatory T Cells Suppress Innate Immunity in Kidney Ischemia-Reperfusion Injury

Gilbert R. Kinsey; Rahul Sharma; Liping Huang; Li Li; Amy L. Vergis; Hong Ye; Shyr-Te Ju; Mark D. Okusa

Both innate and adaptive mechanisms participate in the pathogenesis of kidney ischemia-reperfusion injury (IRI), but the role of regulatory immune mechanisms is unknown. We hypothesized that the anti-inflammatory effects of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) protect against renal IRI. Partial depletion of Tregs with an anti-CD25 mAb potentiated kidney damage induced by IRI. Reducing the number of Tregs resulted in more neutrophils, macrophages, and innate cytokine transcription in the kidney after IRI but did not affect CD4(+) T cells or B cells. We performed adoptive transfer of lymph node cells from wild-type mice or FoxP3-deficient Scurfy mice into T cell- and B cell-deficient RAG-1 knockout mice to generate mice with and without FoxP3(+) Tregs, respectively. FoxP3(+) Treg-deficient mice accumulated a greater number of inflammatory leukocytes after renal IRI than mice containing Tregs. To confirm that a lack of Tregs potentiated renal injury, we co-transferred isolated Tregs and Scurfy lymph node cells; Treg repletion significantly attenuated IRI-induced renal injury and leukocyte accumulation. Furthermore, although adoptive transfer of wild-type Tregs into RAG-1 knockout mice was sufficient to prevent kidney IRI, transfer of IL-10-deficient Tregs was not. Taken together, these results demonstrate that Tregs modulate injury after kidney IRI through IL-10-mediated suppression of the innate immune system.


Kidney International | 2010

Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney

Gilbert R. Kinsey; Liping Huang; Amy L. Vergis; L i Li; Mark D. Okusa

Reperfusion following ischemia is associated with acute kidney injury and inflammation. Using a mouse model, we exposed the kidney to a nonlethal period of ischemia, rendering it refractory to future ischemia-induced dysfunction. This ischemic preconditioning is partially mediated by Treg lymphocytes that suppress immune responses. We found that this maneuver significantly inhibited the accumulation of neutrophils and macrophages, tubular necrosis, and loss of kidney function caused by a subsequent ischemia/reperfusion injury 1 week later. The initial ischemia/reperfusion caused a significant increase in CD4(+)CD25(+)FoxP3(+) and CD4(+)CD25(+)IL-10(+) Treg cells within the kidney at 7 days of reperfusion. Treatment of preconditioned mice with a Treg cell-depleting antibody (PC61) reversed the effect of preconditioning on kidney neutrophil accumulation and partially inhibited the functional and histological protection of preconditioning. Adoptive transfer of Treg cells in naive mice, before ischemia/reperfusion, mimicked the protective and anti-inflammatory effects of ischemic preconditioning on the kidney. These studies highlight the role of Treg cells in ischemic preconditioning.


Journal of Clinical Investigation | 2012

Dendritic cells tolerized with adenosine A2AR agonist attenuate acute kidney injury

Li Li; Liping Huang; Hong Ye; Steven Song; Amandeep Bajwa; Sang Ju Lee; Emily K. Moser; Katarzyna Jaworska; Gilbert R. Kinsey; Yuan Ji Day; Joel Linden; Peter I. Lobo; Diane L. Rosin; Mark D. Okusa

DC-mediated NKT cell activation is critical in initiating the immune response following kidney ischemia/reperfusion injury (IRI), which mimics human acute kidney injury (AKI). Adenosine is an important antiinflammatory molecule in tissue inflammation, and adenosine 2A receptor (A₂AR) agonists protect kidneys from IRI through their actions on leukocytes. In this study, we showed that mice with A₂AR-deficient DCs are more susceptible to kidney IRI and are not protected from injury by A₂AR agonists. In addition, administration of DCs treated ex vivo with an A₂AR agonist protected the kidneys of WT mice from IRI by suppressing NKT production of IFN-γ and by regulating DC costimulatory molecules that are important for NKT cell activation. A₂AR agonists had no effect on DC antigen presentation or on Tregs. We conclude that ex vivo A₂AR-induced tolerized DCs suppress NKT cell activation in vivo and provide a unique and potent cell-based strategy to attenuate organ IRI.


Journal of The American Society of Nephrology | 2012

Autocrine Adenosine Signaling Promotes Regulatory T Cell–Mediated Renal Protection

Gilbert R. Kinsey; Liping Huang; Katarzyna Jaworska; Konstantine Khutsishvili; David A. Becker; Hong Ye; Peter I. Lobo; Mark D. Okusa

Regulatory T cells (Tregs) suppress the innate inflammation associated with kidney ischemia-reperfusion injury (IRI), but the mechanism is not well understood. Tregs express CD73, the final enzyme involved in the production of extracellular adenosine, and activation of the adenosine 2A receptor (A(2A)R) on immune cells suppresses inflammation and preserves kidney function after IRI. We hypothesized that Treg-generated adenosine is required to block innate immune responses in kidney IRI and that the Treg-generated adenosine would signal through A(2A)Rs on inflammatory cells and, in an autocrine manner, on Tregs themselves. We found that adoptively transferred wild-type Tregs protected wild-type mice from kidney IRI, but the absence of adenosine generation (CD73-deficient Tregs) or adenosine responsiveness (A(2A)R-deficient Tregs) led to inhibition of Treg function. Pharmacologic stimulation of A(2A)R before adoptive transfer augmented the ability of wild-type and CD73-deficient Tregs to suppress kidney IRI. Microarray analysis and flow cytometry revealed that A(2A)R activation enhanced surface PD-1 expression on Tregs in the absence of any other activation signal. Treatment of Tregs with a PD-1 blocking antibody before adoptive transfer reversed their protective effects, even if pretreated with an A(2A)R agonist. Taken together, these results demonstrate that the simultaneous ability to generate and respond to adenosine is required for Tregs to suppress innate immune responses in IRI through a PD-1-dependent mechanism.


American Journal of Physiology-renal Physiology | 2011

Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury

Alaa S. Awad; Gilbert R. Kinsey; Konstantine Khutsishvili; Ting Gao; W. Kline Bolton; Mark D. Okusa

Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN). C-C chemokine receptor (CCR)2 regulates monocyte/macrophage migration into injured tissues. However, the direct role of CCR2-mediated monocyte/macrophage recruitment in diabetic kidney disease remains unclear. We report that pharmacological blockade or genetic deficiency of CCR2 confers kidney protection in Ins2(Akita) and streptozotocin (STZ)-induced diabetic kidney disease. Blocking CCR2 using the selective CCR2 antagonist RS504393 for 12 wk in Ins2(Akita) mice significantly attenuated albuminuria, the increase in blood urea nitrogen and plasma creatinine, histological changes, and glomerular macrophage recruitment compared with vehicle. Furthermore, mice lacking CCR2 (CCR2(-/-)) mimicked CCR2 blockade by reducing albuminuria and displaying less fibronectin mRNA expression and inflammatory cytokine production compared with CCR2(+/+) mice, despite comparable blood glucose levels. Bone marrow-derived monocytes from CCR2(+/+) or CCR2(-/-) mice adoptively transferred into CCR2(-/-) mice reversed the renal tissue-protective effect in diabetic CCR2(-/-) mice as evaluated by increased urinary albumin excretion and kidney macrophage recruitment, indicating that CCR2 is not required for monocyte migration from the circulation into diabetic kidneys. These findings provide evidence that CCR2 is necessary for monocyte/macrophage-induced diabetic renal injury and suggest that blocking CCR2 could be a novel therapeutic approach in the treatment of DN.


Current Drug Targets | 2009

Immune Mechanisms and Novel Pharmacological Therapies of Acute Kidney Injury

Amandeep Bajwa; Gilbert R. Kinsey; Mark D. Okusa

Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and both innate and adaptive immunity contribute to the pathogenesis. Kidney resident cells promote inflammation after IRI by increasing endothelial cell adhesion molecule expression and vascular permeability. Kidney epithelial cells bind complement and express toll-like receptors and resident and infiltrating cells produce cytokines/chemokines. Early activation of kidney dendritic cells (DCs) initiates a cascade of events leading to accumulation of interferon-gamma-producing neutrophils, infiltrating macrophages, CD4(+) T cells, B cells and invariant natural killer T (NKT) cells. Recent studies from our laboratory now implicate the IL23/IL17 pathway in kidney IRI. Following the initial early phase of inflammation, the late phase involves infiltration of anti-inflammatory cells including regulatory T cells, alternatively activated macrophages and stem cells leading to attenuation of inflammation and initiation of repair. Based upon these immune mechanisms of injury, recent studies hold promise for novel drug therapies. These pharmacological agents have been shown to reduce inflammation or cytotoxicity in rodent models of AKI and some show early promise in clinical trials. This review summarizes recent advances to further our understanding of the immune mechanisms of AKI and potential pharmacological therapies.


Journal of Pharmacology and Experimental Therapeutics | 2008

Extracellular Signal-Regulated Kinase Activation Mediates Mitochondrial Dysfunction and Necrosis Induced by Hydrogen Peroxide in Renal Proximal Tubular Cells

Shougang Zhuang; Gilbert R. Kinsey; Yan Yan; Jiahuai Han; Rick G. Schnellmann

Although tubular necrosis in acute renal failure is associated with excessive production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), the mechanism of ROS-induced cell necrosis remains poorly understood. In this study, we examined the role of the extracellular signaling-regulated kinase (ERK) pathway in H2O2-induced necrosis of renal proximal tubular cells (RPTC) in primary culture. Exposure of 60 to 70% confluent RPTC to 1 mM H2O2 for 3 h resulted in 44% necrotic cell death, as measured by trypan blue uptake, and inactivation of mitogen-activated protein kinase kinase (MEK), the upstream activator of ERK, by either 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene (U0126) or 2-(2′-amino-3′-methoxyphenyl)-oxanaphthalen-4-one (PD98059) or overexpression of dominant-negative mutant of MEK1, inhibited cell death. In contrast, overexpression of active MEK1 enhanced H2O2-induced cell death. H2O2 treatment led to the loss of mitochondrial membrane potential (MMP) in RPTC, which was decreased by U0126 and PD98059. Furthermore, inhibition of the MEK/ERK pathway decreased oxidant-mediated ERK1/2 activation and mitochondrial swelling in isolated renal cortex mitochondria. However, treatment with cyclosporin A (CsA), a mitochondrial permeability transition blocker, did not suppress RPTC necrotic cell death, loss of MMP, and mitochondrial swelling. We suggest that ERK is a critical mediator of mitochondrial dysfunction and necrotic cell death of renal epithelial cells following oxidant injury. Oxidant-induced necrotic cell death was mediated by a CsA-insensitive loss of MMP that is regulated by the ERK pathway.


Journal of The American Society of Nephrology | 2013

Regulatory T Cells in AKI

Gilbert R. Kinsey; Rahul Sharma; Mark D. Okusa

Human AKI is manifested by inflammation, and an early feature in the pathogenesis is the accumulation of immune cells in the kidney. To understand the pathophysiology of AKI, results from animal models have shown a causal relation between the leukocyte activation and infiltration to the kidney after kidney ischemia-reperfusion. Blocking the activation or trafficking of proinflammatory leukocytes into the kidney preserves renal function and histologic integrity. In contrast, the anti-inflammatory lymphocytes called regulatory T cells have an intrinsic renal-protective function and may represent a novel therapeutic approach and/or target for pharmacological manipulation to ameliorate AKI. This review will highlight the recent insight gained into the role and mechanisms of regulatory T cells in AKI.


Journal of Pharmacology and Experimental Therapeutics | 2007

Role of Ca2+-Independent Phospholipase A2γ in Ca2+-Induced Mitochondrial Permeability Transition

Gilbert R. Kinsey; Jane McHowat; Kennerly S. Patrick; Rick G. Schnellmann

Our laboratory previously demonstrated Ca2+-independent phospholipase A2γ (iPLA2γ) is localized to mitochondria and that iPLA2 inhibition blocks cisplatin-induced caspase-mediated apoptosis. Whereas the mitochondrial permeability transition (MPT) is a key control point for apoptosis, the role of mitochondrial iPLA2γ in MPT has not been established. In the present study, we addressed this issue. Ca2+-induced renal cortex mitochondrial (RCM) swelling was blocked by the MPT inhibitor cyclosporine A. The R-isomer of bromoenol lactone (R-BEL), which enantiospecifically inhibits iPLA2γ, inhibited Ca2+-induced RCM MPT, whereas S-BEL (negative control) had no effect. Ca2+ treatment resulted in a significant increase in free arachidonic acid (AA) (>50 μM) in the RCM suspension that was blocked by pretreatment with BEL. No increases in free myristic, palmitic, stearic, oleic, linoleic, or docosahexaenoic acid were detected after Ca2+ treatment. The addition of AA (18 μM) to Ca2+-treated RCM with inhibited iPLA2γ activity restored MPT. We also determined that RCM iPLA2γ displays higher activity against plasmenylcholine with AA in the sn-2 position than oleic acid. Ca2+ exposure significantly increased RCM iPLA2γ activity; however, the Ca2+-induced activation of iPLA2γ was not the result of mitochondrial membrane potential dissipation, opening of the MPT pore, or mitochondrial swelling. Taken together these findings provide strong evidence that Ca2+-induced RCM MPT is mediated by iPLA2γ-catalyzed AA liberation.

Collaboration


Dive into the Gilbert R. Kinsey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Ye

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge