Gilberto de Assis Pereira
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilberto de Assis Pereira.
Mathematische Nachrichten | 2016
Grey Ercole; Gilberto de Assis Pereira
Let p > 1 and let be a bounded and smooth domain of R N , N ≥ 2. It is well known that the infimum λq() := inf n k∇uk p : u ∈ W 1,p 0 () and kuk q = 1 o 0 () and also in C()). Moreover, we prove that any minimizer up ofp() satisfies −�pup = up(xp)�p()δxp , where δxp is the Dirac delta distribution concentrated at the only point xp satisfying |up(xp)| = kupk ∞ = 1. In the second part of the paper we prove that limp→∞ �p() 1 p = 1 kρk1 where ρ denotes the distance function to the boundary ∂. We also prove that there exist pn → ∞, x∗ ∈ and u∞ ∈ W 1,∞ 0 () such that: ρ(x∗) = kρk ∞ , xpn → x∗, upn → u∞ uniformly in , 0 < u∞ ≤ ρ kρk1 in and
Mathematische Nachrichten | 2018
Grey Ercole; Gilberto de Assis Pereira
In this paper we study Sobolev‐type inequalities associated with singular problems for the fractional p‐Laplacian operator in a bounded domain of RN, N≥2.
Journal D Analyse Mathematique | 2018
Grey Ercole; Gilberto de Assis Pereira
AbstractFor each q ∈ (0, 1), let
Advanced Nonlinear Studies | 2016
Hamilton Bueno; Grey Ercole; Shirley S. Macedo; Gilberto de Assis Pereira
Nonlinear Analysis-theory Methods & Applications | 2017
P. Belchior; Hamilton Bueno; Olimpio H. Miyagaki; Gilberto de Assis Pereira
{\lambda _q}(\Omega ): = inf\{ ||{\nabla _v}||_{{L^P}(\Omega )}^P:v \in W_0^{1,P}(\Omega )and\int_\Omega {|v{|^q}dx = 1\} }
arXiv: Analysis of PDEs | 2018
P. Belchior; Hamilton Bueno; Olimpio H. Miyagaki; Gilberto de Assis Pereira
Journal of Differential Equations | 2018
Hamilton Bueno; Olimpio H. Miyagaki; Gilberto de Assis Pereira
λq(Ω):=inf{||∇v||LP(Ω)P:v∈W01,P(Ω)and∫Ω|v|qdx=1} where p > 1 and Ω is a bounded and smooth domain of RN, N ≥ 2. We first show that
arXiv: Analysis of PDEs | 2018
Grey Ercole; Gilberto de Assis Pereira; Rémy Sanchis
arXiv: Analysis of PDEs | 2018
Hamilton Bueno; Guido G. Mamani; Gilberto de Assis Pereira
0 < \mu (\Omega ): = \mathop {\lim }\limits_{q \to {0^ + }} {\lambda _q}(\Omega )|\Omega {|^{p/q}} < \infty
arXiv: Analysis of PDEs | 2017
Claudianor O. Alves; Grey Ercole; Gilberto de Assis Pereira