Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilda G. Hillman is active.

Publication


Featured researches published by Gilda G. Hillman.


BMC Cancer | 2006

Genistein inhibits radiation-induced activation of NF-κB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest

Julian J. Raffoul; Yu Wang; Omer Kucuk; Jeffrey D. Forman; Fazlul H. Sarkar; Gilda G. Hillman

BackgroundNew cancer therapeutic strategies must be investigated that enhance prostate cancer treatment while minimizing associated toxicities. We have previously shown that genistein, the major isoflavone found in soy, enhanced prostate cancer radiotherapy in vitro and in vivo. In this study, we investigated the cellular and molecular interaction between genistein and radiation using PC-3 human prostate cancer cells.MethodsTumor cell survival and progression was determined by clonogenic analysis, flow cytometry, EMSA analysis of NF-κB, and western blot analysis of cyclin B1, p21WAF1/Cip1, and cleaved PARP protein.ResultsGenistein combined with radiation caused greater inhibition in PC-3 colony formation compared to genistein or radiation alone. Treatment sequence of genistein followed by radiation and continuous exposure to genistein showed optimal effect. Cell cycle analysis demonstrated a significant dose- and time-dependent G2/M arrest induced by genistein and radiation that correlated with increased p21WAF1/Cip1 and decreased cyclin B1 expression. NF-κB activity was significantly decreased by genistein, yet increased by radiation. Radiation-induced activation of NF-κB activity was strongly inhibited by genistein pre-treatment. A significant and striking increase in cleaved PARP protein was measured following combined genistein and radiation treatment, indicating increased apoptosis.ConclusionA mechanism of increased cell death by genistein and radiation is proposed to occur via inhibition of NF-κB, leading to altered expression of regulatory cell cycle proteins such as cyclin B and/or p21WAF1/Cip1, thus promoting G2/M arrest and increased radiosensitivity. These findings support the important and novel strategy of combining genistein with radiation for the treatment of prostate cancer.


Journal of Clinical Investigation | 1993

Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin-4.

Nicholas Obiri; Gilda G. Hillman; Gabriel P. Haas; Sudha Sud; Raj K. Puri

Previously, Puri et al. (Puri, R. K., M. Ogata, P. Leland, G. M. Feldman, D. Fitzgerald, and I. Pastan. 1991. Cancer Res. 51:3011-3017) have demonstrated that murine sarcoma and colon adenocarcinoma cells express high affinity interleukin-4 receptors (IL-4R) which are internalized after binding to a chimeric ligand consisting of IL-4 and Pseudomonas exotoxin. In the present study, we have tested primary cultures of human renal cell carcinoma (RCC) cells, generated from tumor specimens obtained after nephrectomy, for the expression of IL-4R and their modulation by IL-4. By using iodinated IL-4 in a receptor binding assay, we observed that renal cell carcinoma cells expressed a single class of high affinity IL-4R ranging from 1,425 +/- 207 (mean +/- SEM) to 3,831 +/- 299 (mean +/- SEM) IL-4R molecules/cell with a Kd ranging from 112 +/- 11 pM to 283 +/- 71 pM. Northern blot analysis for IL-4R gene expression, performed with a cDNA probe to IL-4R, revealed that all RCC cells exhibited a single mRNA species of 4 kb. IL-4 downregulated the surface expression of IL-4R on one RCC tumor cell line. The function of IL-4R expression on RCC tumor cells was further determined by investigating the effect of IL-4 on tumor cell growth in vitro and comparing it with IL-4 effect on growth of normal fibroblast and endothelial cell lines. Tumor cell growth, as measured by [3H]thymidine incorporation, was inhibited by IL-4 from 20 to 68% in a dose-dependent manner. A neutralizing antibody to human IL-4 was able to reverse the growth inhibitory effect of IL-4. Normal human fibroblast and endothelial cell lines also expressed high affinity IL-4R, however, IL-4 did not inhibit their growth in vitro. In fact, IL-4 caused modest stimulation of their growth. Taken together, our findings can help develop strategies for the treatment of RCC in which IL-4R may be used as a target for IL-4 itself, for IL-4 toxin therapy or, alternatively, in gene therapy.


Cancer Research | 2007

Down-regulation of Apurinic/Apyrimidinic Endonuclease 1/Redox Factor-1 Expression by Soy Isoflavones Enhances Prostate Cancer Radiotherapy In vitro and In vivo

Julian J. Raffoul; Sanjeev Banerjee; Vinita Singh-Gupta; Zvi E. Knoll; Alemu Fite; Hao Zhang; Judith Abrams; Fazlul H. Sarkar; Gilda G. Hillman

We previously showed that genistein, the major bioactive component of soy isoflavones, acts as a radiosensitizer and potentiates prostate tumor cell killing by radiation in vitro and in animal tumor models in vivo. However, when given alone in vivo, pure genistein promoted increased lymph node metastasis, which was not observed with a soy isoflavone mixture consisting of genistein, daidzein, and glycitein. In this study, we show that soy inhibit tumor cell growth and potentiates radiation-induced cell killing in vitro like pure genistein. In an orthotopic model, combining soy isoflavones with tumor irradiation inhibited prostate tumor growth. To determine the molecular mechanisms by which soy isoflavones potentiate radiotherapy, we investigated apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) and nuclear factor kappaB (NF-kappaB), two signaling molecules involved in survival pathways. Soy isoflavones decreased APE1/Ref-1 expression in vitro, whereas radiation up-regulated it. Pretreatment with soy isoflavones followed by radiation inhibited APE1/Ref-1 expression. APE1/Ref-1 decrease correlated with decreased DNA-binding activity of NF-kappaB mediated by soy isoflavones and radiation, thus promoting cell killing. In vivo treatment of prostate tumors with soy isoflavones and radiation down-regulated APE1/Ref-1 protein expression and NF-kappaB activity, confirming the molecular alterations observed in vitro. The down-regulation of APE1/Ref-1 and NF-kappaB by isoflavones, in vitro and in vivo, supports our hypothesis that these markers represent biological targets of isoflavones. Indeed, a 2-fold increase in APE1/Ref-1 expression, obtained by cDNA transfection, resulted in a 2-fold increase in NF-kappaB DNA-binding activity, and both of which were down-regulated by soy isoflavones, confirming the cross-talk between these molecules and, in turn, causing radiosensitization.


International Journal of Cancer | 2009

Radiation‐induced HIF‐1α cell survival pathway is inhibited by soy isoflavones in prostate cancer cells

Vinita Singh-Gupta; Hao Zhang; Sanjeev Banerjee; Dejuan Kong; Julian J. Raffoul; Fazlul H. Sarkar; Gilda G. Hillman

We previously showed that treatment of prostate cancer cells with soy isoflavones and radiation resulted in greater cell killing in vitro, and caused downregulation of NF‐κB and APE1/Ref‐1. APE1/Ref‐1 functions as a redox activator of transcription factors, including NF‐κB and HIF‐1α. These molecules are upregulated by radiation and implicated in radioresistance of cancer cells. We extended our studies to investigate the role of HIF‐1α survival pathway and its upstream Src and STAT3 molecules in isoflavones and radiation interaction. Radiation induced phosphorylation of Src and STAT3 leading to induction of HIF‐1α. Genistein, daidzein or a mixture of soy isoflavones did not activate this pathway. These data were observed both in PC‐3 (AR‐) and C4‐2B (AR+) androgen‐independent cell lines. Pretreatment with isoflavones inhibited Src/STAT3/HIF‐1α activation by radiation and nuclear translocation of HIF‐1α. These findings correlated with decreased expression of APE1/Ref‐1 and DNA binding activity of HIF‐1α and NF‐κB. In APE1/Ref‐1 cDNA transfected cells, radiation caused a greater increase in HIF‐1α and NF‐κB activities but this effect was inhibited by pretreatment with soy prior to radiation. Transfection experiments indicate that APE1/Ref‐1 inhibition by isoflavones impairs the radiation‐induced transcription activity of NF‐κB and HIF‐1α. This mechanism could result in the inhibition of genes essential for tumor growth and angiogenesis, as demonstrated by inhibition of VEGF production and HUVECs tube formation. Our novel findings suggest that the increased responsiveness to radiation mediated by soy isoflavones could be due to pleiotropic effects of isoflavones blocking cell survival pathways induced by radiation including Src/STAT3/HIF‐1α, APE1/Ref‐1 and NF‐κB.


The Journal of Urology | 1997

Interleukin-13 Receptors on Human Prostate Carcinoma Cell Lines Represent a Novel Target for a Chimeric Protein Composed of IL-13 and a Mutated Form of Pseudomonas Exotoxin

Atul Maini; Gilda G. Hillman; Gabriel P. Haas; Ching Y. Wang; Emily Montecillo; Fasahat Hamzavi; Edson Pontes; Pamela Leland; Ira Pastan; Waldemar Debinski; Raj K. Puri

We have discovered a new cell surface protein in the form of interleukin-13 receptor on several solid tumor cells, including human renal cell carcinoma cells (Obiri et al., 1995; Debinski et al., 1995). This study reports that human prostate cancer cell lines also express high affinity IL-13 receptors (Kd = 159 pM). These receptors are functional because IL-13 surprisingly increased proliferation of all three prostate cancer cell lines studied as determined by thymidine uptake and clonogenic assays. IL-13 receptors on prostate cancer cell lines were targeted using a chimeric protein composed of IL-13 and a mutated form of Pseudomonas exotoxin (PE38QQR). This molecule, termed IL13-PE38QQR, has been found cytotoxic to all three prostate cancer cell lines as determined by the inhibition of protein synthesis. The IC50 ranged between 1 nmol/l, to 15 nmol/l. These data were confirmed by clonogenic assays in which IL13-PE38QQR almost completely inhibited colony formation at 10 nmol/l. IL13-PE38QQR was not cytotoxic to cells that express little or no IL-13R. Heat inactivated IL13-PE38QQR was not cytotoxic to prostate cancer cells indicating specificity. IL13-PE38QQR was also cytotoxic to colonies when they were allowed to form first for several days before the addition of toxins. Our data suggest that additional studies should be performed to target IL-13 receptor bearing prostate cancer.


International Journal of Cancer | 2007

Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model

Julian J. Raffoul; Sanjeev Banerjee; Mingxin Che; Zvi E. Knoll; Daniel R. Doerge; Judith Abrams; Omer Kucuk; Fazlul H. Sarkar; Gilda G. Hillman

We previously reported that genistein, the bioactive isoflavone of soybeans, acts as a radiosensitizer for prostate cancer. Pretreatment of tumor cells with genistein potentiated radiation‐induced killing in vitro and in orthotopic models in vivo. However, pure genistein promoted increased lymph node metastasis, when administered alone in vivo. We investigated in vitro and in vivo the effects of soy isoflavones (genistein, daidzein and glycitein) as soy pills of similar composition are used in human interventions but not pure genistein. Soy isoflavones inhibited cell survival and potentiated radiation cell killing in PC‐3 tumor cells, in vitro. Increased cell killing correlated with inhibition of antiapoptotic molecules Bcl‐xL and survivin, upregulation of proapoptotic Bax molecule and PARP cleavage, suggesting activation of apoptotic pathways. In vivo, using the PC‐3 orthotopic metastatic mouse model, soy isoflavones and prostate tumor irradiation led to enhanced control of primary tumor growth and metastasis, as observed with pure genistein and radiation. Interestingly, treatment with soy isoflavones did not increase metastasis to para‐aortic lymph nodes in contrast to the consistent increase caused by pure genistein. Histologically prostate tumors, treated with soy isoflavones and radiation, showed tumor destruction and in situ tissue alterations, comparable with genistein and radiation effects. However, genistein, but not soy isoflavones, caused induction of HIF1‐α in prostate tumors, suggesting that induction of hypoxia by pure genistein could contribute to increased metastasis. Our studies demonstrate the safety and potential role of soy isoflavones for enhancing the therapeutic effect of radiotherapy in prostate cancer.


Clinical & Experimental Metastasis | 2003

Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase

Daotai Nie; Jeffrey A. Nemeth; Yan Qiao; Alex Zacharek; Li Li; Kenny Hanna; Keqin Tang; Gilda G. Hillman; Michael L. Cher; David J. Grignon; Kenneth V. Honn

Arachidonate 12-lipoxygenase (LOX) converts arachidonic acid to 12(S)-hydroxyeicosatetraenoic acid (HETE), a bioactive lipid implicated in tumor angiogenesis, growth, and metastasis. Alteration in 12-LOX expression or activity has been reported in various carcinomas including prostate carcinoma. However, little is known about the impact of the altered expression or activity of 12-LOX on tumor metastasis. In the present study, we examined whether or not an increase in 12-LOX expression in human prostate carcinoma cells can modulate their metastatic potential. We report that increased expression of 12-LOX in PC-3 cells caused a significant change in cell adhesiveness, spreading, motility, and invasiveness. Specifically 12-LOX transfected PC-3 cells were more adhesive toward vitronectin, type I and IV collagen, but not to fibronectin or laminin, than cells transfected with control vector. Increased spreading on vitronectin, fibronectin, collagen type I and IV also was observed in 12-LOX transfected PC-3 cells when compared to control PC-3 cells. The increased spreading of 12-LOX transfected PC-3 cells was blocked by treatment with 12-LOX inhibitors, baicalein and CDC. 12-LOX transfected PC-3 cells were more invasive through Matrigel than cells transfected with control vector. In vivo, tumor cell invasion to surrounding muscle or fat tissues was more frequent in nude mice bearing s.c. tumors from 12-LOX transfected PC-3 cells than in those from control vector transfected cells. When injected via the tail vein into SCID mice with implanted human bone fragments, there was an increase in tumor metastasis to human bone by 12-LOX transfected PC-3 cells in comparison to control vector transfected cells. Taken together, our data suggest that an increase in 12-LOX expression enhances the metastatic potential of human prostate cancer cells.


Nutrition and Cancer | 2010

Soy Isoflavones in Conjunction With Radiation Therapy in Patients With Prostate Cancer

Iftekhar U. Ahmad; Jeffrey D. Forman; Fazlul H. Sarkar; Gilda G. Hillman; Elisabeth I. Heath; Ulka N. Vaishampayan; Michael L. Cher; Fundagul Andic; Peter J. Rossi; Omer Kucuk

Soy isoflavones sensitize prostate cancer cells to radiation therapy by inhibiting cell survival pathways activated by radiation. At the same time, soy isoflavones have significant antioxidant and anti-inflammatory activity, which may help prevent the side effects of radiation. Therefore, we hypothesized that soy isoflavones could be useful when given in conjunction with curative radiation therapy in patients with localized prostate cancer. In addition to enhancing the efficacy of radiation therapy, soy isoflavones could prevent the adverse effects of radiation. We conducted a pilot study to investigate the effects of soy isoflavone supplementation on acute and subacute toxicity (≤6 mo) of external beam radiation therapy in patients with localized prostate cancer. Forty-two patients with prostate cancer were randomly assigned to receive 200 mg soy isoflavone (Group 1) or placebo (Group 2) daily for 6 mo beginning with the first day of radiation therapy, which was administered in 1.8 to 2.5 Gy fractions for a total of 73.8 to 77.5 Gy. Adverse effects of radiation therapy on bladder, bowel, and sexual function were assessed by a self-administered quality of life questionnaire at 3 and 6 mo. Only 26 and 27 patients returned completed questionnaires at 3 and 6 mo, respectively. At each time point, urinary, bowel, and sexual adverse symptoms induced by radiation therapy were decreased in the soy isoflavone group compared to placebo group. At 3 mo, soy-treated patients had less urinary incontinence, less urgency, and better erectile function as compared to the placebo group. At 6 mo, the symptoms in soy-treated patients were further improved as compared to the placebo group. These patients had less dripping/leakage of urine (7.7% in Group 1 vs. 28.4% in Group 2), less rectal cramping/diarrhea (7.7% vs. 21.4%), and less pain with bowel movements (0% vs. 14.8%) than placebo-treated patients. There was also a higher overall ability to have erections (77% vs. 57.1%). The results suggest that soy isoflavones taken in conjunction with radiation therapy could reduce the urinary, intestinal, and sexual adverse effects in patients with prostate cancer.


BMC Cancer | 2007

Progression of renal cell carcinoma is inhibited by genistein and radiation in an orthotopic model

Gilda G. Hillman; Yu Wang; Mingxin Che; Julian J. Raffoul; Mark Yudelev; Omer Kucuk; Fazlul H. Sarkar

BackgroundWe have previously reported the potentiation of radiotherapy by the soy isoflavone genistein for prostate cancer using prostate tumor cells in vitro and orthotopic prostate tumor models in vivo. However, when genistein was used as single therapy in animal models, it promoted metastasis to regional para-aortic lymph nodes. To clarify whether these intriguing adverse effects of genistein are intrinsic to the orthotopic prostate tumor model, or these results could also be recapitulated in another model, we used the orthotopic metastatic KCI-18 renal cell carcinoma (RCC) model established in our laboratory.MethodsThe KCI-18 RCC cell line was generated from a patient with papillary renal cell carcinoma. Following orthotopic renal implantation of KCI-18 RCC cells and serial in vivo kidney passages in nude mice, we have established a reliable and predictable metastatic RCC tumor model. Mice bearing established kidney tumors were treated with genistein combined with kidney tumor irradiation. The effect of the therapy was assessed on the primary tumor and metastases to various organs.ResultsIn this experimental model, the karyotype and histological characteristics of the human primary tumor are preserved. Tumor cells metastasize from the primary renal tumor to the lungs, liver and mesentery mimicking the progression of RCC in humans. Treatment of established kidney tumors with genistein demonstrated a tendency to stimulate the growth of the primary kidney tumor and increase the incidence of metastasis to the mesentery lining the bowel. In contrast, when given in conjunction with kidney tumor irradiation, genistein significantly inhibited the growth and progression of established kidney tumors. These findings confirm the potentiation of radiotherapy by genistein in the orthotopic RCC model as previously shown in orthotopic models of prostate cancer.ConclusionOur studies in both RCC and prostate tumor models demonstrate that the combination of genistein with primary tumor irradiation is a more effective and safer therapeutic approach as the tumor growth and progression are inhibited both in the primary and metastatic sites.


Cellular Immunology | 1995

Systemic treatment with interleukin-4 induces regression of pulmonary metastases in a murine renal cell carcinoma model

Gilda G. Hillman; Elia Younes; Daniel W. Visscher; Esa Ali; John S. Lam; Emily Montecillo; J. Edson Pontes; Gabriel P. Haas; Raj K. Puri

Advanced metastatic renal cell carcinoma has been shown to be responsive to immunotherapy but the response rate is still limited. We have investigated the therapeutic potential of systemic interleukin-4 (IL-4) administration for the treatment of pulmonary metastases in the murine Renca renal adenocarcinoma model. Renca cells were injected iv in Balb/c mice to induce multiple pulmonary tumor nodules. From Day 5, Renca-bearing mice were treated with two daily injections of recombinant murine IL-4 for 5 consecutive days. IL-4 treatment induced a significant reduction in the number of lung metastases in a dose-dependent manner and significantly augmented the survival of treated animals. Immunohistochemistry studies, performed on lung sections, showed macrophage and CD8+ T cell infiltration in the tumor nodules 1 day after the end of IL-4 treatment. The CD8 infiltration increased by Day 7 after IL-4 treatment. Granulocyte infiltration was not detectable. To clarify further the role of the immune system in IL-4 anti-tumor effect, mice were depleted of lymphocyte subpopulations by in vivo injections of specific antibodies prior to treatment with IL-4. Depletion of CD8+ T cells or AsGM1+ cells abrogated the effect of IL-4 on lung metastases, whereas depletion of CD4+ T cells had no impact. These data indicate that CD8+ T cells and AsGM1+ cells are involved in IL-4-induced regression of established renal cell carcinoma.

Collaboration


Dive into the Gilda G. Hillman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel P. Haas

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge