Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilda Grard is active.

Publication


Featured researches published by Gilda Grard.


PLOS Neglected Tropical Diseases | 2014

Zika Virus in Gabon (Central Africa) – 2007: A New Threat from Aedes albopictus?

Gilda Grard; Mélanie Caron; Illich Manfred Mombo; Dieudonné Nkoghe; Statiana Mboui Ondo; Davy Jiolle; Didier Fontenille; Christophe Paupy; Eric M. Leroy

Background Chikungunya and dengue viruses emerged in Gabon in 2007, with large outbreaks primarily affecting the capital Libreville and several northern towns. Both viruses subsequently spread to the south-east of the country, with new outbreaks occurring in 2010. The mosquito species Aedes albopictus, that was known as a secondary vector for both viruses, recently invaded the country and was the primary vector involved in the Gabonese outbreaks. We conducted a retrospective study of human sera and mosquitoes collected in Gabon from 2007 to 2010, in order to identify other circulating arboviruses. Methodology/Principal Findings Sample collections, including 4312 sera from patients presenting with painful febrile disease, and 4665 mosquitoes belonging to 9 species, split into 247 pools (including 137 pools of Aedes albopictus), were screened with molecular biology methods. Five human sera and two Aedes albopictus pools, all sampled in an urban setting during the 2007 outbreak, were positive for the flavivirus Zika (ZIKV). The ratio of Aedes albopictus pools positive for ZIKV was similar to that positive for dengue virus during the concomitant dengue outbreak suggesting similar mosquito infection rates and, presumably, underlying a human ZIKV outbreak. ZIKV sequences from the envelope and NS3 genes were amplified from a human serum sample. Phylogenetic analysis placed the Gabonese ZIKV at a basal position in the African lineage, pointing to ancestral genetic diversification and spread. Conclusions/Significance We provide the first direct evidence of human ZIKV infections in Gabon, and its first occurrence in the Asian tiger mosquito, Aedes albopictus. These data reveal an unusual natural life cycle for this virus, occurring in an urban environment, and potentially representing a new emerging threat due to this novel association with a highly invasive vector whose geographic range is still expanding across the globe.


PLOS ONE | 2007

Marburg virus infection detected in a common African bat.

Jonathan S. Towner; Xavier Pourrut; César G. Albariño; Chimène Nze Nkogue; Brian H. Bird; Gilda Grard; Thomas G. Ksiazek; Jean-Paul Gonzalez; Stuart T. Nichol; Eric M. Leroy

Marburg and Ebola viruses can cause large hemorrhagic fever (HF) outbreaks with high case fatality (80–90%) in human and great apes. Identification of the natural reservoir of these viruses is one of the most important topics in this field and a fundamental key to understanding their natural history. Despite the discovery of this virus family almost 40 years ago, the search for the natural reservoir of these lethal pathogens remains an enigma despite numerous ecological studies. Here, we report the discovery of Marburg virus in a common species of fruit bat (Rousettus aegyptiacus) in Gabon as shown by finding virus-specific RNA and IgG antibody in individual bats. These Marburg virus positive bats represent the first naturally infected non-primate animals identified. Furthermore, this is the first report of Marburg virus being present in this area of Africa, thus extending the known range of the virus. These data imply that more areas are at risk for MHF outbreaks than previously realized and correspond well with a recently published report in which three species of fruit bats were demonstrated to be likely reservoirs for Ebola virus.


Antiviral Research | 2010

Structure and functionality in flavivirus NS-proteins: perspectives for drug design.

Michela Bollati; Karin Alvarez; René Assenberg; Cécile Baronti; Bruno Canard; Shelley Cook; Bruno Coutard; Etienne Decroly; Xavier de Lamballerie; Ernest A. Gould; Gilda Grard; Jonathan M. Grimes; Rolf Hilgenfeld; Anna M. Jansson; Hélène Malet; Erika J. Mancini; Eloise Mastrangelo; Andrea Mattevi; Mario Milani; Gregory Moureau; Johan Neyts; Raymond J. Owens; Jingshan Ren; Barbara Selisko; Silvia Speroni; Holger Steuber; David I. Stuart; Torsten Unge; Martino Bolognesi

Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.


Emerging Infectious Diseases | 2009

Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon, 2007.

Eric Leroy; Dieudoné Nkoghe; Benjamin Ollomo; Chimène Nze-Nkogue; Pierre Becquart; Gilda Grard; Xavier Pourrut; Rémi N. Charrel; Gregory Moureau; Angélique Ndjoyi-Mbiguino; Xavier de Lamballerie

An outbreak of febrile illness occurred in Gabon in 2007, with 20,000 suspected cases. Chikungunya or dengue-2 virus infections were identified in 321 patients; 8 patients had documented co-infections. Aedes albopictus was identified as the principal vector for the transmission of both viruses.


Clinical Infectious Diseases | 2012

Recent Introduction and Rapid Dissemination of Chikungunya Virus and Dengue Virus Serotype 2 Associated With Human and Mosquito Coinfections in Gabon, Central Africa

Mélanie Caron; Christophe Paupy; Gilda Grard; Pierre Becquart; Illich Mombo; Branly Bikie Bi Nso; Fabrice Kassa Kassa; Dieudonné Nkoghe; Eric M. Leroy

BACKGROUND Chikungunya virus (CHIKV) and Dengue virus serotype 2 (DENV-2) were recently introduced in central Africa, along with Aedes albopictus. Simultaneous outbreaks of CHIKV and DENV-2 have subsequently occurred, in Cameroon in 2006 and Gabon in 2007. METHODS To study the spread of the 2 viruses, we conducted active surveillance of acute febrile syndromes throughout Gabon between 2007 and 2010. Diagnostic methods included quantitative real-time reverse-transcription polymerase chain reaction, and molecular characterization was based on partial envelope gene sequences. RESULTS Between 2007 and 2010, 4287 acutely febrile patients were investigated for CHIKV and DENV-2 infections, of whom 1567 were CHIKV-positive, 376 DENV-2-positive, and 37 coinfected. We diagnosed 153 CHIKV and 11 DENV-2 cases in 2008, and 5 CHIKV and 9 DENV-2 cases in 2009. In 2010, CHIKV and DENV-2 caused a second large simultaneous outbreak. Among 2826 acutely febrile patients examined during this outbreak, 1112 were CHIKV-positive, 288 DENV-2-positive, and 28 coinfected. Mosquitoes were collected near the homes of coinfected patients, and 1 Aedes albopictus specimen was found to be positive for both CHIKV and DENV-2. CONCLUSIONS These findings show the rapid dissemination of CHIKV and DENV-2 within a nonimmune population in a tropical African country, probably facilitated by the spread of Aedes albopictus. This has resulted in major simultaneous outbreaks with numerous coinfections in both human and mosquito.


Journal of General Virology | 2010

Genomics and evolution of Aedes-borne flaviviruses

Gilda Grard; Gregory Moureau; Rémi N. Charrel; Edward C. Holmes; Ernest A. Gould; Xavier de Lamballerie

We analysed the complete coding sequences of all recognized species of Aedes-borne flavivirus, including previously uncharacterized viruses within the yellow fever virus (YFV), Spondweni virus (SPOV) and dengue virus (DENV) groups. Two major phylogenetic lineages were revealed: one included the YFV and Entebbe bat virus groups, and the other included the DENV, SPOV and Culex-borne flavivirus groups. This analysis supported previous evidence that Culex-borne flaviviruses have evolved from ancestral Aedes-borne viruses. However, the topology at the junction between these lineages remains complex and may be refined by the discovery of viruses related to the Kedougou virus. Additionally, viral evolution was found to be associated with the appearance of new biological characteristics; mutations that may modify the envelope protein structure were identified for seven viruses within the YFV group, and an expansion of host-vector range was identified in the two major evolutionary lineages, which in turn may facilitate the emergence of mosquito-borne flaviviruses.


The Journal of Infectious Diseases | 2011

Emergence of divergent Zaire ebola virus strains in Democratic Republic of the Congo in 2007 and 2008.

Gilda Grard; Roman Biek; Jean-Jacques Muyembe Tamfum; Joseph N. Fair; Nathan D. Wolfe; Pierre Formenty; Janusz T. Paweska; Eric Leroy

BACKGROUND Zaire ebolavirus was responsible for 2 outbreaks in Democratic Republic of the Congo (DRC), in 1976 and 1995. The virus reemerged in DRC 12 years later, causing 2 successive outbreaks in the Luebo region, Kasai Occidental province, in 2007 and 2008. METHODS Viruses of each outbreak were isolated and the full-length genomes were characterized. Phylogenetic analysis was then undertaken to characterize the relationships with previously described viruses. RESULTS The 2 Luebo viruses are nearly identical but are not related to lineage A viruses known in DRC or to descendants of the lineage B viruses encountered in the Gabon-Republic of the Congo area, with which they do, however, share a common ancestor. CONCLUSIONS Our findings strongly suggest that the Luebo 2007 outbreak did not result from viral spread from previously identified foci but from an independent viral emergence. The previously identified epidemiological link with migratory bat species known to carry Zaire ebolavirus RNA support the hypothesis of viral spillover from this widely dispersed reservoir. The high level of similarity between the Luebo2007 and Luebo2008 viruses suggests that local wildlife populations (most likely bats) became infected and allowed local viral persistence and reemergence from year to year.


Protein Science | 2007

Structural bases for substrate recognition and activity in Meaban virus nucleoside-2′-O-methyltransferase

Eloise Mastrangelo; Michela Bollati; Mario Milani; Barbara Selisko; Frederic Peyrane; Bruno Canard; Gilda Grard; Xavier de Lamballerie; Martino Bolognesi

Viral methyltransferases are involved in the mRNA capping process, resulting in the transfer of a methyl group from S‐adenosyl‐L‐methionine to capped RNA. Two groups of methyltransferases (MTases) are known: (guanine‐N7)‐methyltransferases (N7MTases), adding a methyl group onto the N7 atom of guanine, and (nucleoside‐2′‐O‐)‐methyltransferases (2′OMTases), adding a methyl group to a ribose hydroxyl. We have expressed and purified two constructs of Meaban virus (MV; genus Flavivirus) NS5 protein MTase domain (residues 1–265 and 1–293, respectively). We report here the three‐dimensional structure of the shorter MTase construct in complex with the cofactor S‐adenosyl‐L‐methionine, at 2.9 Å resolution. Inspection of the refined crystal structure, which highlights structural conservation of specific active site residues, together with sequence analysis and structural comparison with Dengue virus 2′OMTase, suggests that the crystallized enzyme belongs to the 2′OMTase subgroup. Enzymatic assays show that the short MV MTase construct is inactive, but the longer construct expressed can transfer a methyl group to the ribose 2′O atom of a short GpppAC5 substrate. West Nile virus MTase domain has been recently shown to display both N7 and 2′O MTase activity on a capped RNA substrate comprising the 5′‐terminal 190 nt of the West Nile virus genome. The lack of N7 MTase activity here reported for MV MTase may be related either to the small size of the capped RNA substrate, to its sequence, or to different structural properties of the C‐terminal regions of West Nile virus and MV MTase‐domains.


PLOS Neglected Tropical Diseases | 2012

Clinical forms of chikungunya in Gabon, 2010.

Dieudonné Nkoghe; Roland Fabrice Kassa Kassa; Mélanie Caron; Gilda Grard; Branly Bikié; Christophe Paupy; Pierre Becquart; Ulrich Bisvigou; Eric Leroy

Background Chikungunya virus (CHIKV) has caused multiple outbreaks in tropical and temperate areas worldwide, but the clinical and biological features of this disease are poorly described, particularly in Africa. We report a prospective study of clinical and biological features during an outbreak that occurred in Franceville, Gabon in 2010. Methodology/Principal Findings We collected, in suspect cases (individuals presenting with at least one of the following symptoms or signs: fever, arthralgias, myalgias, headaches, rash, fatigue, nausea, vomiting, diarrhea, bleeding, or jaundice), blood samples, demographic and clinical characteristics and outcome. Hematological and biochemical tests, blood smears for malaria parasites and quantitative PCR for CHIKV then dengue virus were performed. CHIKV+ patients with concomitant malaria and/or dengue were excluded from the study. From May to July 2010, data on 270 laboratory-confirmed CHIK patients were recorded. Fever and arthralgias were reported by respectively 85% and 90% of patients, while myalgias, rash and hemorrhage were noted in 73%, 42% and 2% of patients. The patients were grouped into 4 clinical categories depending on the existence of fever and/or joint pain. On this basis, mixed forms accounted for 78.5% of cases, arthralgic forms 12.6%, febrile forms 6.7% and unusual forms (without fever and arthralgias) 2.2%. No cases of organ failure or death were reported. Elevated liver enzyme and creatinine levels, anemia and lymphocytopenia were the predominant biological abnormalities, and lymphocytopenia was more severe in patients with high viral loads (p = 0.01). Conclusions/Significance During CHIK epidemics, some patients may not have classical symptoms. The existence of unusual forms and the absence of severe forms of CHIK call for surveillance to detect any change in pathogenicity.


Nature Protocols | 2007

Long PCR Product Sequencing (LoPPS): a shotgun-based approach to sequence long PCR products.

Sébastien Emonet; Gilda Grard; Nadège Brisbarre; Gregory Moureau; Sarah Temmam; Rémi N. Charrel; Xavier de Lamballerie

Here we describe a practical procedure for sequencing long PCR products. The method relies on ultrasonic shearing of PCR products, resulting in fragments 700–1,000 nt long. Termini are subsequently repaired to obtain blunt ends and 3′ A-overhangs are added before TA cloning. A predetermined number of clones are sequenced using an insert-independent primer to obtain an overlapping contig covering the full length of the PCR product. This method is cost effective and enables the complete sequencing of any large PCR product in a high-throughput format. Processing of amplified DNA requires 3 h handling time prior to the ligation step, and the clone library is available 2 d later. The complete sequence information is obtained approximately 5 d after the PCR step, depending on the sequencing procedure adopted.

Collaboration


Dive into the Gilda Grard's collaboration.

Top Co-Authors

Avatar

Eric Leroy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Leroy

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rémi N. Charrel

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Gonzalez

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bradley S. Schneider

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge