Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gildas Le Minter is active.

Publication


Featured researches published by Gildas Le Minter.


Journal of Virology | 2014

Highly diverse morbillivirus-related paramyxoviruses in wild fauna of the southwestern Indian Ocean Islands: evidence of exchange between introduced and endemic small mammals.

David A. Wilkinson; Julien Mélade; Muriel Dietrich; Beza Ramasindrazana; Voahangy Soarimalala; Erwan Lagadec; Gildas Le Minter; Pablo Tortosa; Jean-Michel Heraud; Xavier de Lamballerie; Steven M. Goodman; Koussay Dellagi; Hervé Pascalis

ABSTRACT The Paramyxoviridae form an increasingly diverse viral family, infecting a wide variety of different hosts. In recent years, they have been linked to disease emergence in many different animal populations and in humans. Bats and rodents have been identified as major animal populations capable of harboring paramyxoviruses, and host shifting between these animals is likely to be an important driving factor in the underlying evolutionary processes that eventually lead to disease emergence. Here, we have studied paramyxovirus circulation within populations of endemic and introduced wild small mammals of the southwestern Indian Ocean region and belonging to four taxonomic orders: Rodentia, Afrosoricida, Soricomorpha, and Chiroptera. We report elevated infection levels as well as widespread paramyxovirus dispersal and frequent host exchange of a newly emerging genus of the Paramyxoviridae, currently referred to as the unclassified morbillivirus-related viruses (UMRVs). In contrast to other genera of the Paramyxoviridae, where bats have been shown to be a key host species, we show that rodents (and, in particular, Rattus rattus) are significant spreaders of UMRVs. We predict that the ecological particularities of the southwestern Indian Ocean, where small mammal species often live in densely packed, multispecies communities, in combination with the increasing invasion of R. rattus and perturbations of endemic animal communities by active anthropological development, will have a major influence on the dynamics of UMRV infection. IMPORTANCE Identification of the infectious agents that circulate within wild animal reservoirs is essential for several reasons: (i) infectious disease outbreaks often originate from wild fauna; (ii) anthropological expansion increases the risk of contact between human and animal populations and, as a result, the risk of disease emergence; (iii) evaluation of pathogen reservoirs helps in elaborating preventive measures to limit the risk of disease emergence. Many paramyxoviruses for which bats and rodents serve as major reservoirs have demonstrated their potential to cause disease in humans and animals. In the context of the biodiversity hot spot of southwestern Indian Ocean islands and their rich endemic fauna, we show that highly diverse UMRVs exchange between various endemic animal species, and their dissemination likely is facilitated by the introduced Rattus rattus. Hence, many members of the Paramyxoviridae appear well adapted for the study of the viral phylodynamics that may be associated with disease emergence.


PLOS Neglected Tropical Diseases | 2016

Human Leptospirosis on Reunion Island, Indian Ocean: Are Rodents the (Only) Ones to Blame?

Vanina Guernier; Erwan Lagadec; Colette Cordonin; Gildas Le Minter; Yann Gomard; Frédéric Pagès; Alain Michault; Pablo Tortosa; Koussay Dellagi

Background Although leptospirosis is a zoonosis of major concern on tropical islands, the molecular epidemiology of the disease aiming at linking human cases to specific animal reservoirs has been rarely explored within these peculiar ecosystems. Methodology/Principal Findings Five species of wild small mammals (n = 995) as well as domestic animals (n = 101) were screened for Leptospira infection on Reunion Island; positive samples were subsequently genotyped and compared to Leptospira from clinical cases diagnosed in 2012–2013 (n = 66), using MLST analysis. We identified two pathogenic species in human cases, namely Leptospira interrogans and Leptospira borgpetersenii. Leptospira interrogans was by far dominant both in clinical samples (96.6%) and in infected animal samples (95.8%), with Rattus spp and dogs being its exclusive carriers. The genetic diversity within L. interrogans was apparently limited to two sequence types (STs): ST02, identified among most clinical samples and in all rats with complete MLST, and ST34, identified in six humans, but not in rats. Noteworthy, L. interrogans detected in two stray dogs partially matched with ST02 and ST34. Leptospira borgpetersenii was identified in two clinical samples only (3.4%), as well as in cows and mice; four haplotypes were identified, of which two seemingly identical in clinical and animal samples. Leptospira borgpetersenii haplotypes detected in human cases were clearly distinct from the lineage detected so far in the endemic bat species Mormopterus francoismoutoui, thus excluding a role for this volant mammal in the local human epidemiology of the disease. Conclusions/Significance Our data confirm rats as a major reservoir of Leptospira on Reunion Island, but also pinpoint a possible role of dogs, cows and mice in the local epidemiology of human leptospirosis. This study shows that a comprehensive molecular characterization of pathogenic Leptospira in both clinical and animal samples helps to gaining insight into leptospirosis epidemiology within a specific environmental setting.


PLOS Neglected Tropical Diseases | 2016

Identification of Tenrec ecaudatus, a Wild Mammal Introduced to Mayotte Island, as a Reservoir of the Newly Identified Human Pathogenic Leptospira mayottensis

Erwan Lagadec; Yann Gomard; Gildas Le Minter; Colette Cordonin; Eric Cardinale; Beza Ramasindrazana; Muriel Dietrich; Steven M. Goodman; Pablo Tortosa; Koussay Dellagi

Leptospirosis is a bacterial zoonosis of major concern on tropical islands. Human populations on western Indian Ocean islands are strongly affected by the disease although each archipelago shows contrasting epidemiology. For instance, Mayotte, part of the Comoros Archipelago, differs from the other neighbouring islands by a high diversity of Leptospira species infecting humans that includes Leptospira mayottensis, a species thought to be unique to this island. Using bacterial culture, molecular detection and typing, the present study explored the wild and domestic local mammalian fauna for renal carriage of leptospires and addressed the genetic relationships of the infecting strains with local isolates obtained from acute human cases and with Leptospira strains hosted by mammal species endemic to nearby Madagascar. Tenrec (Tenrec ecaudatus, Family Tenrecidae), a terrestrial mammal introduced from Madagascar, is identified as a reservoir of L. mayottensis. All isolated L. mayottensis sequence types form a monophyletic clade that includes Leptospira strains infecting humans and tenrecs on Mayotte, as well as two other Malagasy endemic tenrecid species of the genus Microgale. The lower diversity of L. mayottensis in tenrecs from Mayotte, compared to that occurring in Madagascar, suggests that L. mayottensis has indeed a Malagasy origin. This study also showed that introduced rats (Rattus rattus) and dogs are probably the main reservoirs of Leptospira borgpetersenii and Leptospira kirschneri, both bacteria being prevalent in local clinical cases. Data emphasize the epidemiological link between the two neighbouring islands and the role of introduced small mammals in shaping the local epidemiology of leptospirosis.


PLOS Neglected Tropical Diseases | 2017

Human leptospirosis in Seychelles: A prospective study confirms the heavy burden of the disease but suggests that rats are not the main reservoir

Leon Biscornet; Koussay Dellagi; Frédéric Pagès; Jastin Bibi; Jeanine De Comarmond; Julien Mélade; Graham Govinden; Maria Tirant; Yann Gomard; Vanina Guernier; Erwan Lagadec; Jimmy Mélanie; Gérard Rocamora; Gildas Le Minter; Julien Jaubert; Patrick Mavingui; Pablo Tortosa

Background Leptospirosis is a bacterial zoonosis caused by pathogenic Leptospira for which rats are considered as the main reservoir. Disease incidence is higher in tropical countries, especially in insular ecosystems. Our objectives were to determine the current burden of leptospirosis in Seychelles, a country ranking first worldwide according to historical data, to establish epidemiological links between animal reservoirs and human disease, and to identify drivers of transmission. Methods A total of 223 patients with acute febrile symptoms of unknown origin were enrolled in a 12-months prospective study and tested for leptospirosis through real-time PCR, IgM ELISA and MAT. In addition, 739 rats trapped throughout the main island were investigated for Leptospira renal carriage. All molecularly confirmed positive samples were further genotyped. Results A total of 51 patients fulfilled the biological criteria of acute leptospirosis, corresponding to an annual incidence of 54.6 (95% CI 40.7–71.8) per 100,000 inhabitants. Leptospira carriage in Rattus spp. was overall low (7.7%) but dramatically higher in Rattus norvegicus (52.9%) than in Rattus rattus (4.4%). Leptospira interrogans was the only detected species in both humans and rats, and was represented by three distinct Sequence Types (STs). Two were novel STs identified in two thirds of acute human cases while noteworthily absent from rats. Conclusions This study shows that human leptospirosis still represents a heavy disease burden in Seychelles. Genotype data suggests that rats are actually not the main reservoir for human disease. We highlight a rather limited efficacy of preventive measures so far implemented in Seychelles. This could result from ineffective control measures of excreting animal populations, possibly due to a misidentification of the main contaminating reservoir(s). Altogether, presented data stimulate the exploration of alternative reservoir animal hosts.


American Journal of Tropical Medicine and Hygiene | 2015

Rickettsia and Bartonella Species in Fleas from Reunion Island

Constentin Dieme; Philippe Parola; Vanina Guernier; Erwan Lagadec; Gildas Le Minter; Elsa Balleydier; Frédéric Pagès; Koussay Dellagi; Pablo Tortosa; Didier Raoult; Cristina Socolovschi

Rickettsia felis, Rickettsia typhi, and Bartonella DNA was detected by molecular tools in 12% of Rattus rattus fleas (Xenopsylla species) collected from Reunion Island. One-third of the infested commensal rodents captured during 1 year carried at least one infected flea. As clinical signs of these zoonoses are non-specific, they are often misdiagnosed.


Emerging microbes & infections | 2018

Biogeography of Leptospira in wild animal communities inhabiting the insular ecosystem of the western Indian Ocean islands and neighboring Africa article

Muriel Dietrich; Yann Gomard; Erwan Lagadec; Beza Ramasindrazana; Gildas Le Minter; Vanina Guernier; Aude Benlali; Gérard Rocamora; Wanda Markotter; Steven M. Goodman; Koussay Dellagi; Pablo Tortosa

Understanding the processes driving parasite assemblages is particularly important in the context of zoonotic infectious diseases. Leptospirosis is a widespread zoonotic bacterial infection caused by pathogenic species of the genus Leptospira. Despite a wide range of animal hosts, information is still lacking on the factors shaping Leptospira diversity in wild animal communities, especially in regions, such as tropical insular ecosystems, with high host species richness and complex biogeographical patterns. Using a large dataset (34 mammal species) and a multilocus approach at a regional scale, we analyzed the role of both host species diversity and geography in Leptospira genetic diversity in terrestrial small mammals (rodents, tenrecs, and shrews) and bats from 10 different islands/countries in the western Indian Ocean (WIO) and neighboring Africa. At least four Leptospira spp. (L. interrogans, L. borgpetersenii, L. kirschneri, and L. mayottensis) and several yet-unidentified genetic clades contributed to a remarkable regional Leptospira diversity, which was generally related to the local occurrence of the host species rather than the geography. In addition, the genetic structure patterns varied between Leptospira spp., suggesting different evolutionary histories in the region, which might reflect both in situ diversification of native mammals (for L. borgpetersenii) and the more recent introduction of non-native host species (for L. interrogans). Our data also suggested that host shifts occurred between bats and rodents, but further investigations are needed to determine how host ecology may influence these events.


Emerging microbes & infections | 2017

Astroviruses in bats, Madagascar

Camille Lebarbenchon; Beza Ramasindrazana; Léa Joffrin; Sandra Bos; Erwan Lagadec; Gildas Le Minter; Yann Gomard; Pablo Tortosa; David A. Wilkinson; Steven M. Goodman; Patrick Mavingui

Emerging Microbes & Infections (2017) 6, e58; doi:10.1038/emi.2017.47; published online 21 June 2017


Virology Journal | 2018

Bat Astrovirus in Mozambique

Flora Hoarau; Gildas Le Minter; Léa Joffrin; M. Corrie Schoeman; Erwan Lagadec; Beza Ramasindrazana; Andréa Dos Santos; Steven M. Goodman; Eduardo Samo Gudo; Patrick Mavingui; Camille Lebarbenchon

Astroviruses (AstVs) are responsible for infection of a large diversity of mammalian and avian species, including bats, aquatic birds, livestock and humans. We investigated AstVs circulation in bats in Mozambique and Mayotte, a small island in the Comoros Archipelago located between east Africa and Madagascar. Biological material was collected from 338 bats and tested for the presence of the AstV RNA-dependent RNA-polymerase gene with a pan-AstV semi-nested polymerase chain reaction assay. None of the 79 samples obtained from Mayotte bats (Pteropus seychellensis comorensis and Chaerephon pusillus) tested positive; however, 20.1% of bats sampled in Mozambique shed AstVs at the time of sampling and significant interspecific variation in the proportion of positive bats was detected. Many AstVs sequences obtained from a given bat species clustered in different phylogenetic lineages, while others seem to reflect some level of host-virus association, but also with AstVs previously reported from Malagasy bats. Our findings support active circulation of a large diversity of AstVs in bats in the western Indian Ocean islands, including the southeastern African coast, and highlight the need for more detailed assessment of its risk of zoonotic transmission to human populations.


Conservation Genetics | 2018

The contrasting genetic patterns of two sympatric flying fox species from the Comoros and the implications for conservation

Mohamed Thani Ibouroi; Ali Cheha; Véronique Arnal; Erwan Lagadec; Pablo Tortosa; Gildas Le Minter; Said Ali Ousseni Dhurham; Claudine Montgelard; Aurélien Besnard

Pteropus livingstonii and Pteropus seychellensis comorensis are endemic fruit bat species that are among the most threatened animals in the Comoros archipelago. Both species are pollinators and seed dispersers of native and cultivated plants and are thus of crucial importance for the regeneration of natural forests as well as for cultivated plantations. However, these species are subject to strong anthropogenic pressures and face one of the highest rates of natural habitat loss reported worldwide. Yet little is known about the population genetic structure of these two species, making it difficult to define relevant conservation strategies. In this study, we investigated for the two flying fox species (1) the level of genetic diversity within islands, as well as across the archipelago and (2) the genetic structure between the two islands (Anjouan and Mohéli) for P. livingstonii and between the four islands of the archipelago (Anjouan, Mohéli, Grande Comore and Mayotte) for P. s. comorensis using mitochondrial and microsatellite markers. The results revealed contrasting patterns of genetic structure, with P. s. comorensis showing low genetic structure between islands, whereas P. livingstonii exhibited high levels of inter-island genetic differentiation. Overall, the genetic analyses showed low genetic diversity for both species. These contrasting genetic patterns may be the result of different dispersal patterns and the populations’ evolutionary histories. Our findings lead us to suggest that in terms of conservation strategy, the two populations of P. livingstonii (on Anjouan and Mohéli islands) should be considered as two separate management units. We recommend focusing conservation efforts on the Anjouan population, which is the largest, exhibits the highest genetic diversity, and suffers the greatest anthropogenic pressure. As for P. s. comorensis, its four populations could be considered as a single unit for conservation management purposes. For this species, we recommend protecting roosting trees to reduce population disturbance.


Acta Tropica | 2016

Wild fauna as a carrier of Salmonella in Reunion Island: Impact on pig farms.

Claire Tessier; Laura Parama Atiana; Erwan Lagadec; Gildas Le Minter; Martine Denis; Eric Cardinale

Salmonellosis is an economic burden to the livestock industry in Reunion Island. In this study, we wanted to improve our understanding of Salmonella epidemiology by studying the wild fauna of Reunion Island. We assessed Salmonella diversity in small non-flying mammals, birds and cockroaches in order to evaluate their potential role in the epidemiology of Salmonella. A total of 268 samples were collected from cockroaches, small mammals and birds. The bacteriological analyses revealed that 11.7% of non-flying mammals and 25% of cockroaches tested were Salmonella infected; two wild bird species were also detected positive. The 128 Salmonella isolates were distributed in fifteen serotypes and the most predominant were S. 4,[5],12:i:- (21.9% of positive samples) followed by S. Enteritidis (15.6%), S. Typhimurium (15.6%), S. Infantis (12.5%) and S. Weltevreden (12.5%). A total of 27 XbaI profiles were identified using pulsed-field gel electrophoresis. Comparison of these Salmonella strains with our collection of Salmonella isolated from pigs and pig farm environments at the same period revealed 14 strains in common between wild fauna and pigs, especially for cockroaches. Our results suggest that wild fauna of Reunion Island could be infected by strains of Salmonella also isolated from pigs or pig environment. They may play a role in both persistence and spreading of Salmonella and therefore, could be a source of infection in pig farms. Pest control against cockroaches could be a helpful tool in the reduction of Salmonella infection of pigs, limiting contacts between wild fauna and both pigs and pig environment. Special attention should be paid to S. 4,[5],12:i:- since it was predominant in Reunion Islands wild fauna and pigs and was the third most frequently reported serotype in human salmonellosis in Europe.

Collaboration


Dive into the Gildas Le Minter's collaboration.

Top Co-Authors

Avatar

Erwan Lagadec

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Pablo Tortosa

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Koussay Dellagi

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Vanina Guernier

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yann Gomard

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Steven M. Goodman

Field Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Frédéric Pagès

Institut de veille sanitaire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge